

TECHNICAL PROGRAM (Draft 15th March 2025)

The theme for the CIGRE Trondheim Symposium is **CHANGES NEEDED IN THE POWER SYSTEM for the Energy Transition.** The aim is to provide a forum for recent research results, planning and system operations experience related to the changes the power system is undergoing because of the energy transition.

The symposium is organized and supported by eleven CIGRE Study Committees: **SC A3** Transmission and distribution equipment, **SC B1** Insulated cables (co-lead), **SC B2** Overhead lines, **SC B3** Substations and electrical installations, **SC B4** DC systems and power electronics, **SC B5** Protection and automation, **SC C2** Power system operation and control, **SC C3** Power system sustainability and environmental performance, **SC C4** Power system technical performance (co-lead), **SC C6** Active distribution systems and distributed energy resources, **SC D2** Information systems telecommunications and cybersecurity. A description of each Study Committee can be found at the end of this program.

The theme of the symposium is divided into two topic streams:

PS1: Integration of renewable energy resources to the grid

- Environmentally friendly power grid and its equipment
- New applications and technologies applied to AC and DC onshore and offshore grid
- AC and DC onshore and offshore grid
- AC grid development, protection of the future meshed AC and DC system
- Sector integration including hydrogen, EV, energy hubs, DER
- Services/operation applied to AC and DC onshore and offshore grid
- Monitoring the system applied to AC and DC onshore and offshore grid
- Maintenance and Services applied to AC and DC onshore and offshore grid

PS2: Technologies supporting the power grid for energy transition to carbon neutral energy production

- Requirements for power grid and its equipment
- Inverter based control interacting with existing system and Converter stability issues (resonance stability, converter driven stability)
- Coordination between AC and DC networks
- Grid forming
- Multivendor interoperability
- New modelling tools
- Planning and operation of lower inertia system
- System analysis (technical)
- Black start and resilience aspects including
 DER integration
- Optimize and increase the capacity of the energy transmission network
- Reliability and security critical infrastructure

This technical program covers the public sessions available to delegates to the CIGRE Trondheim International Symposium May 12–15, 2025. There are many other meetings taking place of Working Groups and Study Committees. Members of these groups will be issued a detailed schedule.

Monday 12th of May : Tutorials & Workshops

Time	Room 1	Room 2	Room 3	Room 4			
08:00	A3/B5 Tutorial: Modern Instrument Transformers for Protection Applications	C4 Tutorial: Modelling of Inverter Based Resources and Distributed Energy Resources for System Analysis	C2/B4 Tutorial: The Impact of Offshore Wind Power hybrid AC/DC Connections on System Operations and System Design	B2 Tutorial: Forecasting Dynamic Thermal Line Ratings			
10:00	Coffee break						
10:30	B5 Tutorial: Protection and Metering Advancements in the Evolving Power System	C4/C2 Tutorial: Recent Advancements in Technology and Applications of Synchrophasor Measurements	B4 Tutorial: Interoperability in HVDC systems based on partially open-source software	A3 Workshop: Digitalization of Information for T&D Equipment			
12:30	Lunch						
13:30	B1 Tutorial: Condition Evaluation and Lifetime Strategy of HV Cable Systems	B3 Tutorial: Review of Substation Busbar Component Reliability	B4 Workshop: InterOPERA at Crossroads: Advancing Multi-Vendor HVDC Interoperability	C1/B4 Tutorial: Offshore Transmission Planning			
15:30	Coffee break						
16:00	C3 Tutorial: Best Environmental and Socio- Economic Practices for Improving Public Acceptance of High Voltage Substations	C6 Workshop: DSO Tools and Practices for Operating Active Distribution Networks	B4/C4 Workshop: Modelling and Tools for Resilient Power Systems Design - a HVDC- WISE Workshop	D2 Workshop Cybersecurity Perspectives on Regulation, Standards, and Technical Developments			
18:00	Welcome reception						

https://cigrenrccsymposium2025.com/

May 12-15, 2025

Tuesday 13th of May: Technical Paper Sessions (i)

Time	Room 1	Room 2	Room 3	Room 4	Room 5		
08:00			Opening Session				
09:30	Coffee break						
10:30	SC A3 session #1 Switchgear technology, reliability and condition assessment	SC B5 session #1 Protection, Automation and Control System engineering and design aspects	SC B4 session #1 DC-Hub, DC-Grid & Multi- Terminal HVDC	Joint SC C2/C4 session Power System Stability in IBR Dominated Grids	SC C6 session #1 DER impact on Distribution Systems		
12:30	Lunch						
13:30	SC A3 session #2 Transformers and Instrument Transformers	SC B5 session #2 Protection implementation experience - schemes, settings & testing	SC B4 session #2 HVDC Planning, Design, Standardization	SC C4 session #1 Instability and Oscillations in Inverter Dominated Power Systems	SC C6 session #2 Microgrid and BESS applications		
15:30	Coffee break						
16:00	SC C3 session #1 Integrating sustainability criteria into network planning, project design and construction	SC B5 session #3 Impact of Renewable Energy Sources and Inverter Based Resources on network protections	SC B4 session #3 Energy Storage, HVDC Auxiliary Equipment and Components	SC C4 session #2 Enhanced Models and Simulation Capabilities for Inverter Dominated Power Systems	SC C6 session #3 DER integration in Active Distribution Networks		
20:00			GALA DINNER				

Wednesday 14th of May: Technical Paper Sessions (ii)

Time	Room 1	Room 2	Room 3	Room 4	Room 5	
08:00	SC B2 session #1 Towers and foundations design and maintenance	SC B1 session #1 Insulated Cables (1)	SC C2 session #1 System Operational Challenges and Experiences with Integration of Renewables	SC C4 session #3 Power Quality, Transients and EMC Challenges in the Energy Transition	SC D2 session #1 Information systems and services 1	
10:00	Coffee break					
10:30	SC B2 session #2 Conductors and fittings, crossings, vibrations and icing	SC B1 session #2 Insulated Cables (2)	SC C2 session #2 Tools and Methods for Congestion Management and Operational Planning	SC C4 session #4 Dynamic Performance of Power Systems in the Energy Transition	SC D2 session #2 Information systems and services 2 Cybersecurity 1	
12:30			Lunch			
13:30	SC B3 session #1 Substations and electrical installations – 1	SC B1 session #3 Insulated Cables (3)	SC C2 session #3 Inertia Monitoring, DSA and other Tools for Enabling System Operations with Increasing IBR	SC C4 session #5 Enhanced Solution Methods for Performance Analysis of Modern Power Systems	SC D2 session #3 Cybersecurity 2 Telecommunications 1	
15:30	Coffee break					
16:00	SC B3 session #2 Substations and electrical installations – 2	SC C3 session #2 Power infrastructure and biodiversity Technology to reduce environmental impact	SC C2 session #4 Ancillary Services and Control in Power Electronics Dominated Power Systems	Joint SC B4/C4 session Grid Forming, analysis methodologies	SC D2 session #4 Telecommunications 2	
18:00			Closing			
			Technical Tour			

https://cigrenrccsymposium2025.com/

Click <u>here</u> to register now!!

May 12-15, 2025

Monday 12th May Tutorials & Workshops

Draft tutorial & workshop program:

08:00 – 10:00 (Room-1)

A3/B5 Tutorial: Modern Instrument Transformers for Protection Applications

Speaker: Erik Sperling (OMICRON)

Contents:

- Overview of instrument transformer types
- Conventional instrument transformers, design, protection classes and their impact on the IT, Comparison between protection and measurement application
- Low-power instrument transformers, design, protection classes and their impact on the LPIT, Comparison between protection and measurement application
- Comparison between IT and LPIT technologies with a focus on protection application

08:00 – 10:00 (Room-2)

C4 Tutorial: Modelling of Inverter Based Resources and Distributed Energy Resources for System Analysis

Speaker: Deepak Ramasubramanian (EPRI)

Summary: The connection of large inverter based resources (IBR) in transmission systems is often located geographically and electrically far away from load centres. This, coupled with the displacement of synchronous machine plants, results in a reduction of the network short circuit strength at the point of connection. Under these conditions, state-of-the-art positive sequence simulation platforms and models can have difficulties maintaining numerical stability and/or providing an accurate representation of IBR plant dynamic behaviour. As a result, computationally heavy time domain electromagnetic transient (EMT) simulations may be required to evaluate these systems. However, there are still many studies that can be carried out in a positive sequence environment with high percentage of IBRs. This tutorial will delve into the nuances associated with modelling of these resources, their bandwidth, capabilities, and limitations. Further, the tutorial would also discuss aspects related to model parameterization and its importance in not only providing a reasonable representation of the device, but also in its importance in comparing performance across software platforms.

08:00 – 10:00 (Room-3)

C2/B4 Tutorial: The Impact of Offshore Wind Power Hybrid AC/DC Connections on System Operations and System Design

Speaker: Christer Norlander, (Svenska kraftnät), Jan van Putten, (TenneT NL), Mark Jones, (SSEE), Andreas Wasserrab (TenneT DE), Robert Eriksson (Svenska kraftnät), Juergen Krienkamp (DUtrain).

Contents:

- Intro to CIGRE JWG C2/B4.43, ToR, members & organizational, planning & time scheduling
- Market and Regulatory subjects
- TSO roles, System Operator view in general linked to Connecting onland Supplier side perspectives
- System design Supplier side perspectives
- Power system subject, like System stabilities, Voltage control
- Operational training and training in general
- Q&A

08:00 – 10:00 (Room-4)

B2 Tutorial: Forecasting Dynamic Thermal Line Ratings (WG B2.59)

Speaker: George Watt (CEATI International)

Summary: Power transmission system operators (TSOs) require a clear knowledge of line ratings in the present and the near future. Managing the power flow on lines is needed to prevent line conductor overheating that causes premature aging of conductor and its accessories and excessive sagging that may exceed minimum electrical clearances to ground and underbuilt infrastructure. This tutorial based on the WG B2.59 technical brochure is primarily concerned with forecasting the Dynamic Line Ratings (DLR), i.e., the approaches of predicting overhead line thermal ratings daily, hourly or in several minutes, Given the strong dependence of overhead line ratings on wind convection in the complex environment of the typical line corridor, the forecasting process is quite complex.

10:30 – 12:30 (Room-1)

B5 Tutorial: Protection and Metering Advancements in the Evolving Power System (WG B5.57 & WG B5.76)

Speakers: Vladimir Terzija (University of Newcastle), Ross Marcenko (WG B5.76 Convenor) **Summary:**

• New challenges for frequency protection (WG B5.57)

New challenges and the impact of integration of IBRs to the grid will be presented. Focus will be on the changes to power system inertia. Techniques for frequency measurement will be elaborated. The system response to frequency events will then be analysed for traditional and future power systems in which the presence of IBRs will be high. Fundamentals of traditional

underfrequency load shedding will be presented and in the context of new challenges of reduced and volatile system inertia. Experiences and policies in different utilities will be discussed. Approaches for testing frequency-based protective functions will be discussed, concluding with the outlook on frequency protection approaches in future electrical power systems.

Symposium 2025

Trondheim, Norway

• Architecture, standards and specification for metering system in a digital substation and protection, automation and control (PACS) environment (WG B5.76)

10:30 – 12:30 (Room-2)

C4/C2 Tutorial: Recent Advancements in Technology and Applications of Synchrophasor Measurements (JWG C4/C2.62)

Speakers: Dr. Athula Rajapakse (University of Manitoba), Dr. Kjetil Uhlen (Norwegian University of Science and Technology), Dr. Krish Narendra (Electric Power Group), Dr. Steven Blair (Synaptec)

Summary: As modern power grids adapt to host increasing amounts of renewable energy, energy storage, and electric vehicle loads, real-time monitoring is essential for maintaining stability, ensuring reliability, and optimizing power system operation. Synchrophasors, through precisely time-stamped, fast-updating measurements, provide a dynamic view of the power system for situational awareness, operation, control, and protection. These capabilities have enabled the development of many advanced applications, including data analytics, operator situational awareness, real-time control, model and control verification, and more. The objective of this tutorial is to share recent technological advancements, existing applications and industry experiences, as well as emerging applications and future directions.

Since their development in the early 1990s, synchrophasor technology and related standards have evolved significantly. This tutorial will introduce the most recent updates to both the technology and the standards. It will then explore how synchrophasor data can enhance situational awareness and enable information sharing among utilities for the early detection of critical operating conditions.

In today's rapidly evolving energy landscape, integrating renewable energy sources and displacing traditional synchronous generators present significant challenges to grid stability. The tutorial will discuss how leveraging synchrophasor measurements for real-time monitoring of system strength and inertia is key to addressing these challenges. Wide-area synchrophasor measurements, combined with advanced machine learning models, can be used to tackle complex tasks, such as predicting instabilities and making emergency control and protection decisions to maintain system integrity. Emerging applications will also be presented.

Finally, the tutorial will explore future directions in synchronized measurement technology, extending beyond synchrophasors.

Contents:

- Introduction to synchrophasor technology and wide-area monitoring
- Improved coordination between transmission system operators through Wide Area Monitoring (WAMS)
- System Inertia Monitoring Using PMU Data

- Real-time prediction and mitigation of short-term voltage instabilities with synchrophasor data using machine learning techniques
- Applications of synchronized waveform measurements

10:30 – 12:30 (Room-3)

B4 Tutorial: Interoperability in HVDC Systems Based on Partially Open-Source Software

Speakers: Staffan Norrga (KTH Royal Institute of Technology), Ilka Jahn (KTH Royal Institute of Technology), Perry Hofbauer (SSE), Ying Häfner (Hitachi Energy), Pierre Rault (RTE), Rodrigo Alvarez (Siemens Energy).

Summary: The first part of this tutorial reports the findings of WG B4.85: Interoperability in HVDC systems could be supported with open upper-level control and protection (C&P) software, while hardware-near C&P functions stay black-boxed and proprietary. Methodologies like model-based systems engineering and graph theory can assist in defining the boundary between open and closed software. Most likely, partially open C&P software in HVDC is not hindered by legislation, but has to be addressed in contractual agreements. Also, a new responsibility matrix for testing is proposed. The second part of this tutorial consists of a panel discussion with working group members.

10:30 – 12:30 (Room-4)

A3 Workshop: Digitalization of Information for T&D Equipment

Details will be confirmed at a later stage

13:30 – 15:30 (Room-1)

B1 Tutorial: Condition Evaluation and Lifetime Strategy of HV Cable Systems

Speakers: Jacco SMIT (TenneT), Isabella NETT (TenneT), Stelios CHRISTOU (EdF)

Summary: A suitable remaining life management strategy is crucial for cables assets management. For high voltage underground cable systems, a multitude of different factors from various categories determine their end of life.

The aim of Technical Brochure 912 is to reflect current practices for remaining life management and to assess the usage of the system presented in TB 358.

A new method for condition assessment and lifetime strategy of HV cable systems is proposed.

The approach takes into account condition data of the cable and cable systems as well as their age, past failures and maintenance aspects.

13:30 – 15:30 (Room-2)

B3 Tutorial: Review of Substation Busbar Component Reliability (TB 930 WG B3.49)

Speakers: Hubert Müller (Lorünser Austria GmbH), Daniel Fetz (PLP Subcon, Austria)

Summary: Substation busbar systems and components have received little attention within CIGRE or the industry in general, while overhead power line fittings have been analysed in several

https://cigrenrccsymposium2025.com/ May 12–15, 2025

brochures and reports. Cigre working group B3.49 gathered suppliers, utilities, testing lab and other experts in one group and produced Technical Brochure 930. This tutorial outlines the findings from this brochure, addressing basic topics for newcomers as well as high-level studies for experts. It also includes findings from a survey and an analysis of the importance of connectors for the participants. Some central aspects of this work are reliability, testing and installation.

13:30 – 15:30 (Room-3)

B4 Workshop: InterOPERA at Crossroads: Advancing Multi-Vendor HVDC Interoperability

Speakers: Sebastien Silvant (SuperGrid Institute), Ahmed Islam Zama (SuperGrid Institute), Gustavo Figueiredo Gontijo (Orsted), Ben Rennings (Siemens Energy), Benoit de Foucaud (RTE), Christos Dikaiakos (Statnett), Philipp Ruffing (Amprion).

Summary: Achieving seamless interoperability in multi-vendor HVDC systems is a critical enabler for the future of resilient and efficient power grids. This session will provide insights from the InterOPERA project, detailing its multi-faceted approach to overcoming interoperability challenges. The session begins with a brief introduction to the project's overarching objectives and challenges. It will explore foundational work from WP2, which establishes the basic functional requirements for multi-vendor HVDC systems.

Building on this, WP3 delves into the InterOPERA Demonstrator, showcasing the journey from conceptual use cases to detailed specifications with practical applications. WP1 feedback highlights the validation of EMT offline/HIL requirements, underscoring the importance of robust simulation tools. Finally, WP4 and WP5 insights will address fostering multi-party cooperation frameworks and preparing multi-vendor tenders, paving the way for actionable steps toward interoperability. The session concludes with a discussion, engaging the audience and encouraging collaboration.

Contents:

- Introduction
- Basic Functional Requirements for Multi-Vendor HVDC Interoperability
- InterOPERA Demonstrator From Use Cases to Detailed Specifications
- EMT offline model/HIL Requirements Validation in InterOPERA
- Multi-Party Cooperation Framework & Multi-Vendor Tender Preparation
- Q&A and Discussion

13:30 – 15:30 (Room-4)

Tutorial: JWG C1/B4.49 Offshore Transmission Planning

Speakers: Dr. Ervin Spahic (Elia Group), Cornelis Plet (DNV Canada)

Summary: The use of offshore transmission infrastructure has grown significantly over the last decade mainly driven by offshore wind, interconnectors, electrification of oil and gas and islands, and reinforcement of existing grids by offshore transmission systems. The tutorial will address unique challenges like remote offshore connections, submarine cable and platforms applications, harsh sea environment, requiring specific techniques, practices and equipment for

https://cigrenrccsymposium2025.com/

installation and maintenance. Furthermore, it often crosses multiple offshore jurisdictions such as national borders, offshore regulatory zones, exclusive economic zones and/or control area borders, requiring special/innovative regulation and inter-country agreements. This tutorial will try to cover all of these aspects and provide insight and guidelines how offshore transmission grids can be planned, developed, deployed and operated, taking into account the purpose to be fulfilled, the limits of onshore AC grids, limited planning horizons, and technology characteristics.

Contents:

- Overview of existing/planned offshore applications/purpose
- Technologies and equipment for offshore grids
- Planning permitting, regulatory framework
- Modelling aspects
- Planning aspects with availability and reliability
- Future developments and future offshore grid projects

16:00 – 18:00 (Ro<u>om-1)</u>

C3 Tutorial: Best Environmental and Socio-Economic Practices for Improving Public Acceptance of High Voltage Substations

Speakers: Joris den Breejen (TenneT TSO), Henk Sanders (TenneT TSO)

Summary: CIGRE WG C3.15 has made an inventory of the best practices, options, and boundary conditions for the integration of substations in their environment. It describes the results in exploring the best spatial, environmental, and socio-economic practices for improving public acceptance of new and existing substations on land from 2016-2024. This tutorial is a particularly special one for CIGRE, as it diverges from the typical focus on quantitative methodologies and technical solutions. Instead, it serves as an inspiration guide, sparking creativity in the search for innovative ways to enhance public acceptance. Rather than presenting formulas, it offers images and a qualitative strategy to improve public acceptance.

What works, and what does not work, depends on the setting (e.g., country, area, location) and configuration (i.e., voltage levels, installed capacity, size) of the substation. Combinations of various methods, techniques and tools can be used to great effect, and even the use of merely one tool can be effective to increase public acceptance of new substations, potentially decreasing project lead time, and if done right, also project costs, while also strengthening ties between the grid operator and other stakeholders.

16:00 – 18:00 (Room-2)

C6 Workshop: DSO Tools and Practices for Operating Active Distribution Networks

Speakers: Jun Elin Wiik (Sintef)

Summary: The electric distribution system is a crucial enabler in the transition towards a renewables-based and highly electrified energy system. The traditional way of operating the distribution grid has been to ensure enough capacity to avoid the need for active grid operation, such as real-time monitoring, frequent reconfiguration and activation of flexible resources.

To meet that rapidly growing demand and renewable generation, active measures should become standard in the future DSO operation.

Symposium 2025

Trondheim, Norway

This has been in focus for well over a decade, e.g. following the work of CIGRE Working Group C6.11 "Development and operation of Active Distribution Networks" (ADNs). However, the realisation and implementation seem to be slow.

The hypothesis of the NextGrid project is that large parts of the required technologies and actors are already in place and are awaiting the scale-up of the market for these products, such as monitoring solution, flexibility market operators and flexibility providers. However, the demand for these products is not growing in a serious way, and will not, before the DSOs have the tools and practices to exploit these opportunities in the grid operation at scale. Several developments are needed:

- Moving on from today's (mainly) manual reactive processes to more proactive automated real-time operation
- Develop the role of operational planning at the DSO level, to prepare for a more automated and optimal real-time operation, including the acquisition of flexibility, optimizing network topology changes
- Combining existing products and services for ADN into a complete value-chain, from sensors and data acquisition to the grid actions, via the decision support systems of the DSO

16:00 – 18:00 (Room-3)

B4/C4 Workshop: Modelling and Tools for Resilient Power Systems Design:-a HVDC-WISE Workshop

Speakers: Robert Dimitrovski (TenneT), Knut Hornnes (Statnett), Ying Pang (SuperGrid Institute), Ning Yang (Strathclyde University), Sean McGuinness (EPRI Europe).

Summary: The Horizon Europe funded HVDC-WISE project has been concerned with developing an integrated reliability and resilience framework, that can demonstrate the power of large-scale integrated AC/DC networks to improve system planning and operation to ensure improved resilience to a range of extreme operating conditions. This workshop will highlight some of the resilience issues affecting TSOs today, and will outline some of key modelling and tools developments in the project that will help address these issues.

16:00 – 18:00 (Room-4)

D2 Workshop: Cybersecurity Perspectives on Regulation, Standards, and Technical Developments

Speakers: Giovanna Dondossola (RSE), R. Terruggia (RSE), Junho Hong (University of Michigan-Dearborn), Chen-Ching Liu (Virginia Tech), Y. Shneck (Israel), E. Andersen (Denmark).

Contents:

- Cybersecurity in energy regulations and Cyber defence and AI based detection platforms.
- Cybersecurity of the ICCP.
- Beyond the Control Room: Transformative SOC Architectures for Resilient Energy Systems.

• Emerging technologies for securing energy communications: post-quantum cryptography and decentralized PKI.

Tuesday 13th May Technical Paper Sessions (i)

DRAFT Schedule based on Accepted and Conditionally Accepted Papers as of 15th March 2025

*Final acceptance notifications will be communic*ated by 11th April 2025 and this schedule will be updated accordingly. All accepted submissions are expected to deliver a presentation at the assigned paper session.

10:30 – 12:30 (Room-1) SC A3 session #1

Switchgear technology, reliability and condition assessment

Study Committee A3 - Transmission and distribution equipment

ID: 1162

CIGRE fourth reliability survey on equipment

keywords: Life management, Substation equipment, Circuit breakers, GIS, End-of-life decision, Reliability, Maintenance practices, Major failure frequency

Ito, Hiroki (1); Richter, Frank (2); le Roux, Robert (3); Pepper, Wayne (4) 1: Mitsubishi Electric, Japan; 2: 50 Hertz transmission, Germany; 3: ESB, Ireland; 4: Ausgrid, Australia

ID: 1147

Holistic operation and condition assessment enabling efficient usage of equipment

keywords: Condition Assessment, Monitoring, Transformer Albert, Dennis (1); Wischtukat, Philip (2) 1: OMICRON electronics GmbH, Austria;2: Hubert Göbel GmbH, Germany

ID: 1329

Estimating the Norwegian circuit breaker population towards 2050 keywords: Circuit Breaker, Scenario, SF6, Switchgear Treider, Thomas;D'Arco, Salvatore SINTEF Energy Research, Norway

ID: 1235

LCA for AIS /GIS Substations at Axpo Grid and the role of DSO/TSO to become carbon neutral

keywords: LCA für AIS and GIS S/S for 145 kV - the role of the DSO/TSO; CO2 free S/S; CO2 footprint of S/S

Lindner, Christian (1); Schulz, Ingo (1); Spörri, Andy (2); Subal, Luc (2) 1: Axpo Grid AG, Switzerland; 2: Ernst Basel und Partner, Switzerland

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1316

Impact factors on carbon footprint for SF6 free GIS

keywords: LCA, Sustainability, HV, GIS, LCIA, SF6, Clean Air, GHG emissions, GWP, Switchgear Gronbach, Peter; Böhlert, Rene; Schulz, Richard; Kuschel, Mark; Schwind, Katherine; Wallner, Christian; Meier, Thomas Siemens Energy, Germany

ID: 1172

C4FN mixtures solutions for metal-enclosed switchgear to speed up transition to carbon neutral *keywords: C4FN, Dead-tank, GIS, LCA, SF6-free*

JOURJON, Jean-Baptiste GE Vernova Grid Solutions, France

ID: 1287

Investigation of gas mixtures with GWP < 1 in HVCB development and impact on design choices keywords: Gas, Mixture, GWP < 1, High Voltage, Circuit Breaker, Decarbonization, Simulations, Tools, Design, Development

Pisu, Francesco; Coppo, Carlo; Srinivasan, Satish; Hunziker, Severin Pfiffner Messwandler AG, Switzerland

ID: 1289

Evaluation of arc clearing performance for a high voltage circuit breaker using a gas mixture with GWP < 1 for isolation and interruption

keywords: High Voltage, Circuit Breaker, Arc, Clearing, Sulphur Hexafluoride, Natural Origin, Mixture. Coppo, Carlo; Pisu, Francesco; Hunziker, Severin

Pfiffner Messwandler AG, Switzerland

10:30 – 12:30 (Room-2) SC B5 session #1

Protection, Automation and Control System engineering and design aspects

Study Committee B5 - Protection and automation

ID: 1118

Risk Management Optimization for Electric Utilities *keywords: Risk, Protection, Portfolio, CAPEX, OPEX* Siqueira, Iony Tecnix, Brazil

ID: 1171

Addressing Transmission Congestion in India's Renewable Energy Rich Grid using System Integrity Protection Schemes (SIPS)

keywords: Grid Stability, RE Integration, Surge Impedance Loading (SIL), System Integrity Protection Schemes (SIPS), Transmission Congestion

JHA, Pankaj Kumar; SINGH, Brijendra; DAS, Jiten; SAHU, Kuleshwar Power Grid Corporation of India Ltd., India

ID: 1292

Reference Implementation of IEC 61850 and 62351-based Generator Curtailment System with Non-Firm connection Agreements

keywords: IEC 61850, generator, control, IEC 62351, cybersecurity, virtualization

Ueda, Noriyuki

Central Research Institute of Electric Power Industry, Japan

ID: 1300

Six-phase line transmission - why do we need it and how do we do it

keywords: IEC 61850, protection, six-phase, transmission line.

Apostolov, Alexander

OMICRON electronics, United States of America

ID: 1305

PACS Substation Network Monitor Acceptance Tests

keywords: Digital Substation, IEC 61850, Substation Network Monitor, PAC, Process bus

Alexandrino, Mateus (1); Lunardi, Mateus Cruz (1); Scheffer, Rafael Bonet (2); Neto, Carlos de Souza Moraes (2); Ferreira, Adriano de Oliveira (2); Oleskowicz, Bruno Alexandre (2) 1: Eletrobras, Brazil; 2: WEG, Brazil

ID: 1398

EVOLUTION TO CENTRALIZED PROTECTION & CONTROL

keywords: Protection automation, IP/MPLS WAN, Digitization of power substations Verhulst, Dominique (1); Roodenburg, Rob (2); Hemmer, Peter (3) 1: Nokia; 2: Grid to Great; 3: Grid to Great

https://cigrenrccsymposium2025.com/

May 12–15, 2025

ID: 1433

Concept of integrating PACS Project Blueprint design and IEC 61850 Top-Down engineering *keywords: Blueprint Design, IEC 61850, PACS, SCL Model, Top-Down Engineering*

Lisboa, Guilhermme (1); Alexandrino, Mateus (2)

1: Belden; 2: Eletrobras

10:30 – 12:30 (Room-3) SC B4 session #1

DC-Hub, DC-Grid & Multi-Terminal HVDC

Study Committee B4 – DC systems and power electronics

ID: 1136

Review of (co-)design methods for HVDC protection systems

keywords: Co-design, Electrical Energy Hubs, HVDC, Multiterminal, Protection Van Deyck, Merijn; Mohammadi, Abolfazl; Chaffey, Geraint; Van Hertem, Dirk KU Leuven & Etch-EnergyVille, Belgium

ID: 1138

An Economical DC-Hub System for Large Scale Renewable Energy Integration in CHINA

keywords: DC-Hub system, diode rectifier unit, economical solution, hybrid T-shape DC/DC converter, renewable energy integration

YANG, Jie (1); WANG, Liangyou (1); YUE, Bo (1); WU, Yanan (2); JIA, Na (1); WU, Wen (1) 1: Beijing Huairou Laboratory, China, People's Republic of; 2: China Electric Power Research Institute

ID: 1141

Influence of MMC control philosophies on Multi-Terminal HVDC Design and Expandability

keywords: Multi-terminal HVDC grids, MMC control philosophies, DC Protection design, Virtual Capacitance Control, DC grid expandability

ZAMA, Ahmed (1); VAN DOORN, Joris (2); LU, Liang (3); NEUFELD, Alexander (3); SHINODA, Kosei (1) 1: SuperGrid Institute, France; 2: TenneT TSO B.V, Nederland; 3: Energinet, Denmark

ID: 1143

DC Grid Control and Communication Architecture of MTDC

keywords: Control and Protection, DC Grid Controller, HVDC, MTDC

Jiang Häfner, Ying (1); Sebastian C, Richu (2); Vattigunta, Rakesh Reddy (2); Gozdz-Englund, Simon (1) 1: Hitachi Energy, Sweden; 2: Hitachi Energy Technology Services Pvt Ltd, India

ID: 1297

Expandability of DC Grid Control and Sequencers for Offshore Multi-Terminal HVDC Networks – a North Sea Wind Power Hub pre-FEED study

keywords: DC GRID, HVDC, MULTI-TERMINAL, CONTROL, SEQUENCES, WIND POWER

Love, Geoff (1); Kho, Denis (1); Düllmann, Patrick (2); Klein, Christopher (2); Tackenberg, Vincent (3); Bose, Anurag (4); Randewijk, Peter Jan (4)

1: EPRI, Europe; 2: IAEW at RWTH Aachen University, Germany; 3: TenneT TSO GmbH, Germany; 4: Energinet, Denmark

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1309

Analysis of technical requirements on multi-terminal ready HVDC systems

keywords: HVDC, MTDC, Multi-terminal

Kurth, Benedkt (1); Linden, Kerstin (2); Hytinnen, Mats (2)

1: Hitachi Energy Germany AG, Germany; 2: Hitachi Energy Sweden AB

ID: 1359

Feasibility Assessment of Offshore Energy Hub Topologies

keywords: Offshore Energy Hubs, Offshore Wind Power, HVDC Grids

Figueiredo Gontijo, Gustavo (1); Müller, Daniel (2); Nuhic, Mirza (2); Hjerrild, Jesper (1) 1: Ørsted Wind Power A/S; 2: Technical University of Denmark

ID: 1412

Offshore Wind Power Plants and Energy Hub Integration

keywords: Offshore Energy Hubs, Offshore Wind Power Plants, High Voltage, Direct Current, Grid Codes, Grid Connection

Kamenica, Matin (1); Müller, Daniel (1); Pagnani, Daniela (2); Cutululis, Nicolaos A. (1) 1: DTU, Denmark; 2: Ørsted A/S

10:30 – 12:30 (Room-3) Joint SC C2/C4 session

Power System Stability in IBR Dominated Grids

Study Committee C2 - Power system operation and control & Study Committee C4 - Power system technical performance

ID: 1456

Transient stability behavior in the north-south/southeast transmission corridor in Brazil under critical contingency scenarios and online global inertia monitoring

keywords: Global Inertia, Transient Lyapunov Energy Function, Real-Time Decision Making, Transient Stability

Fernandes, Rafael de Oliveira (1); Cardoso, Igor de Siqueira (2); Tavares, Maria Cristina Dias (3); Gomes, Paulo (4)

1: UNICAMP; 2: ONS, Brazil; 3: UNICAMP; 4: PSQ Power Security & Quality

ID: 1327

Integrating Stability Criteria into Power System Scheduling with High Penetration of Converter-Based Generation

keywords: high RES penetration, unit commitment, system stability, stability indices, renewables integration

Rezaei, Javad; Klöckl, Bernd TU Wien, Austria

ID: 1320

Grid Stability Challenges with the Integration of Large Quantum of VRE in Close Proximity in the Indian Power System

keywords: Renewable, Resiliency, Stability, Fault ride through, Low voltage ride through, High voltage ride through, Forecasting, System Strength

Jain, Priyam; Prakash, Abhijeet; Dash, Gaurab; Meena, Priyanka; Malviya, Gaurav; Shukla, Rahul; Pandey, Vivek

Grid Controller of India Ltd., India

ID: 1267

Dynamic Security Assessment (DSA) application in Vietnamese power system to increase the power transfer limit and operate power system stably with a high share of renewable energy sources

keywords: Dynamic Security Assessment, Renewable, TSA, Transfer Limit, VSA

Nguyen, Duc Ninh; Pham, Quynh; Vo, Minh Long; Nguyen, The Van; Duong, Tuan Anh; Cao Anh Quoc, Hung; Phung, Dang Huy; Le, Van Thong; Tran, Trong Tuan

National power system and market operator company limited, Vietnam

ID: 1173

Coordination and arbitrage related to the insertion of Renewable Energy Sources

keywords: arbitrage, coordination, insertion, organisation, renewable energy sources, requirements, utility

Leitloff, Volker; Sermanson, Vincent; Vernay, Yannick; Perrin, Sylvie Rte, France

ID: 1227

Transfer Capability Increase with TCSC in the German Transmission System

keywords: Emergency Power Control (EPC), Fixed Series Capacitor (FSC), Power flow control, Subsynchronous Resonances (SSR), Thyristor Controlled Series Capacitor (TCSC).

WASSERRAB, ANDREAS (1); ENGELBRECHT, TOBIAS (1); HÖHN, SEBASTIAN (1); MÜLLER, JOHANNES (1); VAIDYA, LAKSHMI (2); KUMAR, HEMANT (2); LATORRE, HECTOR (2)

1: TenneT TSO GmbH, Germany; 2: HITACHI ENERGY, Sweden

ID: 1234

Substation reliability when connecting large wind farms

keywords: Busbar Protection, Circuit Breaker Failure, Event Tree, Fault Tree, Offshore, Reliability, Substation, Wind Power

KOHO, Jyrki; HAARLA, Liisa Fingrid Oyj, Finland

ID: 1388

Optimizing Transmission for Renewable Integration - Indian Perspective

keywords: Decarbonization, Grid Optimization, Grid Stability, Inter-State Transmission System, Independent Energy Storage Systems, Variable Renewable Energy

Fahad, Shekh Mohammad; Pandey, Bhanu Prakash; Kant, Laxmi; Bagadia, Vikas; Pal, Ashok Power Grid Corporation of India Limited, India

https://cigrenrccsymposium2025.com/

May 12-15, 2025

ID: 1392

A pioneer approach towards installation of Grid Scale STATCOM enhancing reliability and Security of Renewable Energy network.

keywords: Grid-Security, Renewable Energy, STATCOM, Transmission KUMAR, RAKESH; KUMAR, MANOJ; SINGH, SUNIT KUMAR; BAGGU, VEER RAJU

Power Grid Corporation of India Ltd., India

10:30 – 12:30 (Room-5) SC C6 session #1

DER impact on Distribution Systems

Study Committee C6 - Active distribution systems and distributed energy resources

ID: 1317

Lessons from DER Integration in Australia

keywords: DER, Integration, Australia, Backstop, Hosting, Rooftop PV

Brown, Ray (1); Gannon, Jennifer (2)

1: RBPE, Australia; 2: Energy Queensland Ltd, Australia

ID: 1486

Enabling Large Scale Deployment of LV (Low-Voltage) Connected Solar on the Distribution Network in Ireland

keywords: Distributed energy resources (DER), Low voltage (LV), Solar energy, Network capacity, Empowered Customers, Renewable Energy.

Yasir, Muhammad; Foody, Thomas; Kingston, Paul

Electricity Supply Board (ESB) Networks, Ireland

ID: 1132

Evaluation of voltage fluctuations due to PV output fluctuations in a distribution system with low voltage stability

keywords: Voltage Fluctuations, Voltage stability, DER, PV, Distribution System

Kondo, Fusakazu; Urasaki, Shogo; Takahashi, Naoyuki; Hatta, Hiroyuki

Central Research Institute of Electric Power Industry, Japan

ID: 1167

Current state of dynamic hosting capacity allocation in Australia

keywords: Dynamic, hosting capacity, operating envelope, distributed energy resource, CSIP-AUS Gannon, Jennifer; Guinman, Alex

Energy Queensland, Australia

ID: 1186

Surge in EV Adoption Among Danish Households: Challenges for the Low-Voltage Distribution Grid

keywords: EV fleet growth, Grid challenges, Low voltage distribution network, Smart charging infrastructure, Static & dynamic simulation

Sinha, Rakesh (1); Zhang, Hanchi (1); Golmohamadi, Hessam (1); Chaudhary, Sanjay (1); Bak-Jensen, Birgitte (1); Donnerup, Morten Veis (2)

1: Aalborg university, Denmark; 2: Neogrid Technologies

https://cigrenrccsymposium2025.com/

May 12-15, 2025

ID: 1265

Voltage Droop Control Using Probabilistic and Sensitivity Analysis in AC/DC Hybrid Distribution Network

keywords: AC/DC distribution network, Probabilistic, Sensitivity Analysis, Voltage Droop Control. Lim, Saehwan; Jeong, Soseul; Yoo, Hyeong-Jun; Kim, Chulwoo; Kim, Gyeong-Hun; Jeon, Jin-Hong Korea Electrotechonology research institute, Korea, Republic of (South Korea)

ID: 1318

Evaluation on contribution of DERs to distribution networks dealing with the effect of energy transition

keywords: DERs, Congestion mitigation, System analysis

Okura, Hiroyuki (1); Minami, Masahiro (1); Yoshioka, Takumi (1); Anegawa, Takaya (1); Sakamoto, Takuya (1); Yoshizawa, Shinya (2); Yamaguchi, Yohei (2); Uchida, Hideaki (2); Ota, Yutaka (2); Shigematsu, Tomoki (2)

1: Kansai Transmission and Distribution, Inc.; 2: Osaka University

ID: 1338

Optimization of supermarket consumption using cooling machine flexibility

keywords: Demand response, flexibility, optimization, smart supermarket Kotu, Lasya Priya (1); Iversen, Elisabeth Ottesen (1); Vik, Tiril Berge (1); Rørvik, Ella-Lovise Hammervold (2); Rajasekharan, Jayaprakash (1); Lindberg, Karen Byskov (1)

1: Norwegian University of Science and Technology, Trondheim, Norway; 2: Aneo AS, Trondheim, Norway

13:30 – 15:30 (Room-1) SC A3 session #2

Transformers and Instrument Transformers

Study Committee A3 - Transmission and distribution equipment

ID: 1363

New component designs and technologies to maximize grid resilience and system lifetime keywords: Bushing, HVDC, Instrument Transformer, Resilience, LPIT, Lifetime Kaineder, Kurt (1); Prucker, Udo (2); Judendorfer, Thomas (2); Heil, Bernhard (3) 1: Trench Austria, Austria; 2: Trench Germany GmbH; 3: HSP Hochspannungsgeräte GmbH

ID: 1109

Long-term transient signal monitoring at inductive load switching with VCB – objectives and first experiences

keywords: vacuum circuit breaker, CR dividers, switching transients, transient recorder, transient monitoring, LPIT, inductive load switching, shunt reactor

SPERLING, Peter Erik (1); SCHULZE, Roberto (2); TREMPLER, Christian (3) 1: OMICRON, Switzerland; 2: OMICRON, Germany; 3: 50Hertz Transmission GmbH, Germany

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1168

Combined Power Voltage Transformers – a Novel Product Category

keywords: Biodegradable Liquids, Combined Power Voltage Transformer, Rural Electrification, Compact Substation, Carbon Footprint

NENADIĆ, MARIJANA (1); ŽIGER, IGOR (1); CRNKOVIĆ, IVAN (1); JURIŠIĆ, BRUNO (2) 1: Končar Instrument Transformers Inc., Croatia; 2: Končar Electrical Engineering Institute Ltd.

ID: 1242

Quantifying global power transformer demand and supply for grid expansion

keywords: Demand, Forecast, Manufacturing, Power Transformer, Supply Chain Christoffersen, Edvard; Holmedal, Daniel Rystad Energy

ID: 1293

Impact of high-powered charging of electric ferries on distribution transformers

keywords: lifetime-estimation, distribution transformers, thermal modelling, electrification Espedal, Camilla (1); Sadjina, Severin (2); Tveten, Erlend G. (2); Haugen, Stig Julius (3); Myklebust, Rune (3); Eriksen, Pål Egil (4); Eidså, Gerhard (4); Gjørven, André (5); Søholt, Kyrre (6) 1: SINTEF Energi, Norway; 2: SINTEF Nordvest, Norway; 3: Linja, Norway; 4: Elinett, Norway; 5: Mellom, Norway; 6: Møre Trafo, Norway

13:30 – 15:30 (Room-2) SC B5 session #2

Protection implementation experience - schemes, settings & testing Study Committee B5 - Protection and automation

ID: 1127

Successful Testing of commercially-available AI for Protection Relay Setting Calculations keywords: AI, LLM, Protection relay settings calculations McGuinness, Sean EPRI Europe, Ireland

ID: 1177

132 kV power lines - Field tests - High-resistivity ground faults

keywords: Field tests, high ground resistivity, high resistive ground faults, isolated cross-arms, lack of ground wires, power lines, protection, solidly grounding, wooden poles

Goin, Ronny (1); Norberg, Per (2); Sylte, Arnvid (3); Aunemo, Per Morten (1); Kirkvold, Kristoffer (1); Lysheim, Dag Petter (4); Ohnstad, Trond Magne (4); Mangelrød, Ragnar (4) 1: Statkraft Energi AS, Norway; 2: Per Norberg Kraftkonsult AB, Sweden; 3: Tensio AS, Norway; 4: STATNETT SF, Norway

ID: 1248

Mitigating Overreaching in Distance Relays and Addressing Mutual Coupling in Double-Circuit Transmission Lines

keywords: Distance protection, Overreaching, Fault detection, System stability, Transmission Line Protection, mutual coupling

SONI, HARSHKUMAR PRAVINKUMAR; JHA, PANKAJ KUMAR; SHARMA, AKSHAY POWER GRID CORPORATION OF INDIA, India

ID: 1306

Transforming Differential Relay Communication by Several Strategies for Optimal Fiber Utilization and Reliability: Experiences From Recent Pilot Installations

keywords: Line Differential Protection, Power transmission lines, Multiplexing, Optical fiber, Communication channels

KHURANA, Aman; SHARMA, Akshay; VAISH, Ankit; DUBEY, Anand Power Grid Corporation of India Ltd., India

ID: 1332

Process bus and LPIT operational experiences from eight Norwegian digital substations

keywords: Substations, pilots, IEC61850, LPIT, time synchronization, modelling tools

Hurzuk, Nargis (1); Pollestad, Karl (2); Istad, Maren Kristine (3); Strømsnes, Svein Morten (4); Andersland, Kjartan (4); Gebs, Christopher (5); Sanchez-Acevedo, Santiago (3); Meyer, Hans Kristian (3)

1: Statnett, Norway; 2: BaneNor, Norway; 3: SINTEF Energy Research, Norway; 4: BKK, Norway; 5: Elvia, Norway

ID: 1344

Real-Time Field Implementation of Adaptive Single-Phase Auto-Reclosing for EHV Transmission Lines: Lessons Learned

keywords: Overhead transmission lines, Fault detection, Single-phase auto recloser, Power system stability

SURASHE, Sunil; SHARMA, Akshay; DUBEY, Anand; SINGH, Sanjay Kumar Power Grid Corporation of India Ltd., India

ID: 1385

Revitalizing Busbar Protection: A Comprehensive Field Experience Utilizing Failure Modes and Effects Analysis (FMEA) in Large EHV Substations

keywords: Busbar Protection, Retrofitting, Failure Modes and Effects Analysis (FMEA), Operational Integrity, Risk Management

SHARMA, Akshay; DUBEY, Anand; SINGH, Sanjay Kumar

Power Grid Corporation of India Ltd., India

13:30 – 15:30 (Room-3) SC B4 session #2

HVDC Planning, Design, Standardization

Study Committee B4 – DC systems and power electronics

ID: 1200

Tyrrhenian Link and Adriatic Link – Harmonized Converter Stations for Italian Underwater HVDC Connections

keywords: Converter Station Design, Control and Protection System, System Planning, Environmental Aspects, Commissioning, Expandability

Cortese, Marco (1); Pede, Francesca (1); Deriu, Mattia (1); Hussennether, Volker (2); Lehmann, Markus (2); Priebe, Torsten (2); Sandano, Roberto (2); Krieger, Christian (2) 1: Terna Rete Italia; 2: Siemens Energy Germany

ID: 1221

Operating point dependent DC-FRT requirements in partially-selective MTDC protection - North Sea Wind Power Hub pre-FEED study

keywords: BIPOLAR HVDC, DC PROTECTION, MULTI-TERMINAL, OFFSHORE WIND Klein, Christopher (1); Düllmann, Patrick (1); Love, Geoff (2); Tackenberg, Vincent (3); Neufeld, Alexander (4); Randewijk, Jan Peter (4); Bose, Anurag (4); Leterme, Willem (1) 1: IAEW at RWTH Aachen University, Germany; 2: EPRI Europe; 3: TenneT TSO GmbH; 4: Energinet

ID: 1225

Trends on Hardware Independent Design and Testing of HVDC Control and Protection Systems

keywords: Control, Hardware-in-the-loop, HVDC, Protection, Software-in-the-loop

Hernandez, Joan; Varshochi, Sadra; Wide, Jonas Hitachi Energy, Sweden

ID: 1230

DC fault identification in HVDC grids using machine learning algorithms

keywords: High voltage DC grid, DC fault identification, lightning strikes, convolutional neural network (CNN), WaveNet

Zhao, Xiaoyun (1); Wang, Mian (2)

1: University of Erlangen-Nuremberg; 2: Siemens Energy, Germany

ID: 1231

HVDC control system strategy for scalable simultaneously enabled LFSM/FSM-controllers

keywords: Frequency Control, Frequency Sensitive Mode, HVDC, Limited Frequency Sensitive Mode Pettersson, Martin Per (1,2); Ekestam, Henrik (2); Prescher, Per (3); Bengtsson, Erik (3); Gwoździkowski, Marcin (4)

1: Luleå University of Technology, Sweden; 2: Svenska kraftnät, Sweden; 3: Hitachi Energy, Sweden; 4: Polskie Sieci Elektroenergetyczne, Poland

ID: 1232

Factory system test program of LFSM/FSM-controllers for an HVDC link

keywords: Factory System Testing, Frequency Control, Frequency Sensitive Mode, HVDC, Limited Frequency Sensitive Mode, Real Time Digital Simulator

Pettersson, Martin Per (1,2); Ekestam, Henrik (2); Prescher, Per (3); Bengtsson, Erik (3); Gwoździkowski, Marcin (4)

1: Luleå University of Technology, Sweden; 2: Svenska kraftnät, Sweden; 3: Hitachi Energy, Sweden; 4: Polskie Sieci Elektroenergetyczne, Poland

ID: 1282

Readiness of USA for 640kV HVDC, considering the most severe single continency keywords: HVDC, contingency, mesh connections, reliability

Sellick, Rob; Liu, Cory; Reminisetty, Pranay DNV Energy USA, Inc.

ID: 1426

Planning and Performance Standards for HVDC Systems: Benchmarking of International Practice and Approach for North America

keywords: HVDC, planning, performance, standards, grid code, benchmarking

Del Rosso, Alberto (1); Love, Geoff (1); Sedighizadeh, Mostafa (2)

1: EPRI, USA; 2: Southwest Power Pool, USA

13:30 – 15:30 (Room-4) SC C4 session #1

Instability and Oscillations in Inverter Dominated Power Systems

Study Committee C4 - Power system technical performance

ID: 1148

Mitigation of Low-Frequency Inter-Area Oscillations Using Grid-Forming Inverters

keywords: Continental Europe synchronous area, Grid-forming inverter, Inter-area oscillation, Renewable energy, Virtual synchronous machine

Zhu, Lin (1); Paz, Benjamin (1); Ramasubramanian, Deepak (1); Farantatos, Evangelos (1); Coletta, Guido (2); Pisani, Cosimo (2); Giannuzzi, Giorgio (2)

1: Electric Power Research Institute; 2: Terna

ID: 1482

Dogger Bank wind farm – HVDC converter control interaction studies

keywords: Control Interaction, EMT, Grid Compliance, HVDC, Offshore Wind, Stability Analysis Rygg, Atle (1); Sharifabadi, Kamran (1); Villamor, Lila Vazquez (1); Bodal, Sigmund (1); Gjerde, Sverre Skalleberg (1); Kaysers, Christian (1); Shearer, David (2); Elmelid, Charlotte (3); Wijesinghe, Sarath (4) 1: Equinor; 2: Hitachi Energy; 3: Vargronn; 4: SSE Renewables

ID: 1393

Use of Inherent Damping Capability of Thyristor Controlled Series Compensators to Mitigate Wind Sub-Synchronous Controller Interactions in Heavily Series Compensated Networks

keywords: Inherent Damping, Thyristor Controlled Series Compensators, Wind Power Plants, Wind Sub-Synchronous Controller Interactions

Rathnayaka Weerakoon, Dilini Buddhima (1); Karawita, Chandana (1); Suriyaarachchi, Hiranya (1); Annakkage, Udaya (2)

1: TransGrid Solutions, Canada; 2: University of Manitoba, Canada

ID: 1201

Managing Stability in the Future Converter-Dominated Swedish Power System

keywords: converters, stability, impedance, frequency domain Lennerhag, Oscar; Rogersten, Robert; Hohn, Fabian Svenska kraftnät, Sweden

ID: 1278

Suitable Classification of Power System Stability Phenomena

keywords: Classification, Power system, Stability

Lindner, Marco (1); Abele, Hans (1); John, Christoph (1); Lehner, Joachim (1); Vennemann, Klaus (2); Hennig, Tobias (2); Dimitrovski, Robert (3); Klötzl, Nico (3); Just, Hendrik (4); Stornowski, Reinhard (4) 1: TransnetBW GmbH, Germany; 2: Amprion GmbH, Germany; 3: TenneT TSO GmbH, Germany; 4: 50Hertz Transmission GmbH, Germany

ID: 1314

Process for Diagnosis of Observed Oscillations in IBR-dominant Systems

keywords: Oscillations, Damping, Forced Oscillations, Natural Oscillations, Inverter Based Resources Miller, Nicholas

HICKORYLEDGE LLC, United States of America

13:30 – 15:30 (Room-5) SC C6 session #2

Microgrid and BESS applications

Study Committee C6 - Active distribution systems and distributed energy resources

ID: 1214

Leveraging Household Flexibility to Optimize Microgrid Efficiency and Resilience

keywords: Resilience, Microgrid, Flexibility, Household

Sjoberg, Niklas (1); Berlin, Arne (2); Bobeck, Kristin (2)

1: Sapio AB, Sweden; 2: Vattenfall Eldistribution AB, Sweden

ID: 1272

A Case Study of Protection of an LV Microgrid

keywords: Microgrid, Low voltage, Protection, BESS Brown, Ray RBPE, Australia

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1465

Loss-of-Mains Protection for DER in Australia

keywords: Loss of Mains, Protection, DER, PV Integration Brown, Ray RBPE, Australia

ID: 1164

Utilization of Grid Storage Batteries in Rural Microgrid Areas

keywords: Hydroelectric generator, Microgrid, Rural area, Storage battery, PV

Higashi, Yosuke (1); Kawakita, Koji (1); Wada, Hideki (1); Yamada, Shohei (1); Yoshino, Makoto (2); Arikawa, Seiji (2); Hirose, Kazumasa (2)

1: Chubu Electric Power Grid Co., Inc., Japan; 2: AICHI ELECTRIC CO., LTD., Japan

ID: 1181

Cognitive Robust Optimization for Resilient Energy Storage Operation in Ports: A Case Study from Hirtshals

keywords: Resiliency, Flexibility, Robust management, Operation, Prediction

Ghaemi, Sina; Golmohamadi, Hessam; Anvari-Moghaddam, Amjad; Bak-Jensen, Birgitte Department of Energy (AAU), Aalborg University

ID: 1222

Current protective coordination in off-grid supplied from inverter power sources

keywords: Off-Grid, Inverter, Protection, Relay, Short Circuit, Over Current

Anegawa, Takaya (1,2); Ishigame, Atsushi (1); Takayama, Satoshi (1); Yoshioka, Takumi (2) 1: Osaka Metropolitan University; 2: Kansai Transmission and Distribution, Inc., Japan

ID: 1264

Resilient Microgrids by using Grid Forming Inverters with Rooftop Solar PV and Battery Energy Storage Systems (BESS)

keywords: Battery Energy storage system, Grid Forming inverter, Microgrids, resilient grid, Solar PV singh, kiran (1); Pankaj, Sharma (2); D K, Javeri (3); Naveen, Srivastava (4) 1: POWERGRID, India; 2: POWERGRID, India; 3: POWERGRID, India; 4: POWERGRID, India

ID: 1436

Simulating Degradation Costs in Li-ion Battery Dispatch: Impacts on Planning and Operational Strategies

keywords: aFFR, BESS arbitrage, Degradation, Li-ion, MILP

Agrela, João Carlos (1,2); Abreu, Tiago (1,2); Silva, Ricardo (1); Soares, Tiago (1,2); Gouveia, Clara (1) 1: INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Portugal; 2: FEUP - Faculty of Engineering, University of Porto

ID: 1445

Systematic literature review for application of BESS as grid forming: current issues, challenges, and future trends

keywords: BESS, Grid Forming, Distributed Energy Resource, Artificial Intelligence, Predictive Models Fernandes, Rafael de Oliveira (1); da Silva, Ivan Nunes (2)

https://cigrenrccsymposium2025.com/

Click <u>here</u> to register now!!

May 12-15, 2025

1: Equans, France; 2: USP, Brazil

16:00 – 18:00 (Room-1) SC C3 session #1

Integrating sustainability criteria into network planning, project design and construction Study Committee C3 - Power system sustainability and environmental performance

ID: 1115

Network Planning and Decision-Making under Uncertainty

keywords: Energy transition, Knowledge sharing, Network Planning, Sustainable grid development, UN Sustainable Development Goals

Ackeby, Susanne (1); Hamon, Camille (2); Lindqvist, Helena (3); Olofsson, Magnus (4); Hillberg, Emil (1)

1: RISE, Sweden; 2: Sweco; 3: LightSwitch; 4: Swedish Energy Institute (Svenska Energiinstitutet)

ID: 1396

Energy infrastructure sustainable planning using Pathfinder

keywords: Electricity grid, Sustainability, Planning Process, Grid resilience, Routing, Trasmission Lines, Environmental Costs, Environmental Constraints

Maira, Albano (1); Stefano, Grassi (2); Rivabene, Nicoletta (1); Di Tullio, Lorenzo (1)

1: Terna S.p.A., Italy; 2: Gylitics A.G. Switzerland

ID: 1429

Planning the future power grid for the energy transition: routing through multicriterial Geographical Information Systems (GIS) modelling

keywords: Energy transition, Power lines, Routing, GIS, Environmental Impact Assessment Lopes, João (1); Varela, João (1); Parada, Francisco (1); Matos, Nuno (2); Salvador, Isabel (2) 1: REN, Portugal; 2: Matos, Fonseca & Associados

ID: 1339

Exploration for Environmental Protection Management and Measures in the Construction Period of Sichuan-Chongqing UHVAC Project

keywords: Construction, Environmental Protection, Sichuan-Chongqing, Ultra High Voltage Alternating Current (UHVAC), Water and Soil Conservation

LI, Ni (1); ZHOU, Bing (1); YANG, Huaiwei (2); GAN, Zheyuan (1); HUANG, Rui (1); CHEN, Yulong (1) 1: State Key Laboratory of Power Grid Environmental Protection, China Electric Power Research Institute, China; 2: State Grid Corporation of China Ultra High Voltage Construction Branch, China

ID: 1226

Principles of Sustainable Development in Multi-Criteria Selection of Tower Types for the Development of a 400 kV Transmission System Network

keywords: Sustainable development principles, Multi-criteria optimization, 400 kV Overhead lines, Towers

Curovic, Nada (1); Milanov, Ivan (2); Perisic, Dana (2) 1: EMS, Serbia; 2: Elektroistok projektni biro

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1244

THE MANAGEMENT OF ELECTRICALS LINES CORRIDORS IN SENEGAL : H-P O EXAMPLE

keywords: Corridors, occupations, electricals lines, cohabitation, urban growth NDIAYE, CHEIKHOU OUMAR

SENELEC, Senegal

ID: 1212

LCA and ECI as a tool for sustainable procurement

keywords: Environmental Cost Indicator, Corporate Social Responsibility, Sustainable Procurement, Life Cycle Assessment

Swinkels, Garnt; Hendriks, Ronald TenneT TSO, Netherlands, The

ID: 1440

Towards a Sustainable and Resilient Power Grid: Implementing Circular Economy Principles and Practices

keywords: Corporate Social Responsibility, Resilience, Circular Economy, Ecodesign, Sustainable Procurement, Life Cycle Assessment, Transparency, Reliable Data, Traceability, Raw Material Digital Passport, Regulation

MANTILLA, Marcela; PRIEUR, Pascale; LAFRAGETTE, Amelie RTE, France

16:00 – 18:00 (Room-2) SC B5 session #3

Impact of Renewable Energy Sources and Inverter Based Resources on Network Protections

Study Committee B5 - Protection and automation

ID: 1146

Transitioning to differential protection for offshore wind collector cables using passive sensing *keywords: Offshore wind, cables, differential protection, passive sensing*

Blair, Steven (1); Chandran, Aneesh (1); Kasztenny, Bogdan (2); Tsylin, Alexander (3) 1: Synaptec, United Kingdom; 2: SEL, Canada; 3: Ørsted, Denmark

ID: 1180

Impact of Inverter-Based Resources on Power System Protection and Coordination in India's Renewable Energy-Rich Grid

keywords: Directional Earth Fault, Distance Protection, Grid Disturbances, Inverter-Based Resources (IBR), Protection Coordination, RE Integration

Jha, Pankaj Kumar; Singh, Brijendra; DAS, Jiten

Power Grid Corporation of India Limited, India

ID: 1245

Relay Protection for Offshore Export Cables, Challenges and Solutions

keywords: Offshore Wind Farm, Submarine Cable, Differential Protection, Distance Protection, Directional Protection

Tsylin, Alexander (1); Graumann Moser, Asmus (1); Gajić, Zoran (2) 1: Ørsted, Denmark; 2: Hitachi Energy, Sweden

ID: 1269

Challenges of converter-connected production for distance relay protection

keywords: Converter-connected Production, Direction Determination, Distance Relay, Fault Determination, Wind Turbine

Härkönen, Juulia Annikki

Fingrid Oyj, Finland

ID: 1298

Improving the Transmission Line Protection for Systems with High Penetration of IBRs keywords: IBR, protection, transmission line. Apostolov, Alexander OMICRON electronics, United States of America

16:00 – 18:00 (Room-3) SC B4 session #3

Energy Storage, HVDC Auxiliary Equipment and Components

Study Committee B4 – DC systems and power electronics

ID: 1135

From average to simplified detailed models of a branch of energy storage submodules to integrate energy storage in HVDC system

keywords: High voltage direct current, Multilevel converter, Energy storage, Energy storage submodules, Dc-dc converter, Modelling, Electromagnetic-transients program, Power losses Ouoba, Sidlawendé (1); Errigo, Florian (1); Farias de Barros, Heitor (1); Zama, Ahmed Islam (1); Sau Bassol, Joan (1); Morel, Florent (1); Rault, Pierre (2); Benchaïb, Abdelkrim (1); Bourgeat, Xavier (2) 1: SuperGrid Institute, France; 2: RTE, France

ID: 1154

On operation of renewable source and battery energy storage system integrated to the VSC-based HVDC technology

keywords: Voltage Source Converter (VSC), High Voltage DC (HVDC) Transmission, Wind, Solar PV, Battery Energy Storage (BESS) System

K, VINOTHKUMAR (1); REDDY, AVINASH (1); HAFNER, YING JIANG (2); PONGIGLIONE, PAOLA (3) 1: HITACHI ENERGY TECHNOLOGIES PRIVATE LIMITED, CHENNAI, India; 2: HITACHI ENERGY SWEDEN AB, LUDVIKA, SWEDEN; 3: HITACHI ENERGY, ITALY SPA

ID: 1199

Real-Time Verification of Digital Twin VSC Models for Loss Analysis by Calorimetric Measurement

keywords: Calorimetry, Digital Twin, Efficiency, Electrical Modelling, HVDC, Measurement, MMC, Real-Time, Thermal Modelling

Lange, Julian; Bernet, Daniel; Schmitt, Daniel; Wang, Yeqi Siemens Energy Global GmbH & Co. KG, Germany

ID: 1270

Principle, Design and Electrical Testing of DC Chopper for the BorWin6 Offshore Wind Farm Integration Project

keywords: Offshore wind farm integration, HVDC transmission, fault ride-through, DC chopper

XU, Bin (1); ZHANG, Sheng (1); ZHAO, Boya (1); GAO, Chong (1); YANG, Yuefeng (2); ZHOU, Jianbo (2) 1: State Key Laboratory of Advanced Power Transmission Technology (China Electric Power Research Institute Co., Ltd.), China, People's Republic of; 2: C-EPRI Electric Power Engineering Co., Ltd.

ID: 1304

HVDC circuit breaker reliability and availability model

keywords: HVDC, Multi-terminal, Circuit Breaker, Reliability, Availability

Wu, Jiayang (1); van Nieuwstadt, Saskia (2); Plet, Cornelis Arie (3); Vaessen, Peter (2) 1: DNV, Netherlands; 2: Technical University Delft; 3: DNV, Canada

ID: 1331

Basic Considerations - HVDC Circuit Breaker Reactor

keywords: reactor, HVDC, VSC, DC breaker, DC grid

Pointner, Klaus (1); Westerweller, Thomas (2); Monni, Taneli (1); Dopplmair, Peter (1) 1: Trench Austria GmbH, Austria; 2: Siemens Energy Global GmbH, Germany

ID: 1368

Mutual Short-Circuit Coupling of Air-Core Dry-Type Reactors in HVDC schemes

keywords: HVDC, Dry-type, Series Reactors, Short-Circuit, Station, Layout, Mutual, Coupling, Equipment design

Gaun, Alexander; Fröhlich, Bernhard; Katzensteiner, Johannes; Wirth, Stefan Coil Innovation Gmbh, Austria

ID: 1373

Assessment of vulnerabilities in the transition to SF6-free coupled onshore and offshore power grids

keywords: Circuit breaker, Converter, HVDC, Hybrid AC-DC grids, Reliability, Resilience, Vulnerability Sperstad, Iver Bakken; Vistnes, Matias; Treider, Thomas SINTEF Energy Research, Norway

16:00 – 18:00 (Room-4) SC C4 session #2

Enhanced Models and Simulation Capabilities for Inverter Dominated Power Systems Study Committee C4 - Power system technical performance

ID: 1183

Challenges faced by TSO to specify, test and integrate EMT models of IBRs to support grid stability *keywords: EMT simulation, IBR integration, Grid code requirements*

DENNETIERE, SEBASTIEN; VERNAY, YANNICK; THIBERT, MICKAEL; MORRETTON, FABIEN; MBEROU, ELIAS

RTE, France

ID: 1423

Enhancing Power System Simulation Interoperability: Application of Functional Mock-up Interface for Model Exchange

keywords: Co-simulation, Model exchange, Functional Mock-up Interface, Modelica, Intellectual *Property*

Yang, Ning (1); Egea Alvarez, Agusti (1); Morel, Florent (2); Ouoba, Sidlawende (2); Xu, Lie (1) 1: University of Strathclyde, United Kingdom; 2: SuperGrid Institute SAS

ID: 1382

Large-scale Electromagnetic Transient Simulation of the French grid: Challenges and Solutions keywords: Electromagnetic Transients, simulation, large-scale networks, Common Information Model, Model exchange; Data portability, sparse matrix solver, parallelization.

Bruned, Boris; Martin, César; Petit, Ambroise RTE, France

ID: 1310

Centralized Network Model in a Colombian DSO Company for Enhanced Planning and Operation *keywords: DSO, Network Model, PowerFactory Digsilent, DER, planning, operation, Protection analysis, Hybrid Architecture, ETL, transmission, distribution, GIS*

Londono, Vanesa; Morales, Rafael; Sanchez, Jonh Alexander; Silva, Jessica Celsia, Colombia

ID: 1255

A Study on the Impact of EV Chargers on Transient Stability and Root-mean-square Model

keywords: EV chargers, Laboratory test, Power system, RMS model, Transient stability

Masuda, Muneki; Satoh, Hayato

Central Research Institute of Electric Power Industry, Japan

ID: 1137

Overhead line modeling for wide area EMT grid simulations

keywords: Electromagnetic Transients, Grid, Modelling, Overhead Line, Section

Barth, Daniel (1); Goertz, Max (1); Wenig, Simon (1); Pinter, Peter (1); Lindner, Marco (2); Oldehinkel, Niklas Phil (2)

1: Mosaic Grid Solutions GmbH, Germany; 2: TransnetBW GmbH, Germany

https://cigrenrccsymposium2025.com/

Click <u>here</u> to register now!!

May 12–15, 2025

16:00 – 18:00 (Room-5) SC C6 session #3

DER integration in Active Distribution Networks

Study Committee C6 - Active distribution systems and distributed energy resources

ID: 1169

Modeling Market Participation of Energy Storages in a Renewable Power System Through Loop Block Orders

keywords: Block Orders, Storages, Market, Offering

Wirtz, Peter; Moehrke, Fabian; Moser, Albert

Institute for High Voltage Equipment and Grids, Digitalization and Energy Economics, RWTH Aachen University, Germany

ID: 1149

Development of Distribution System and Market Operations in South Africa

keywords: South Africa, distribution system operator (DSO), distribution markets, decarbonisation Pandarum, Aradhna

The Impact Catalyst, South Africa

ID: 1204

Value of demand-side flexibility by reducing grid loss costs

keywords: CINELDI Reference Grid, Flexibility, Grid Loss, Power Flow Analysis

Grøtan, Åshild; Stevik, Tor Kristian; Nygård, Heidi S.

Norwegian University of Life Sciences (NMBU)

ID: 1207

Sector integration including hydrogen, EV, energy hubs, DER

keywords: Sector Integration, Carbon-Neutral, Electric Vehicles (EVs), Energy Hubs, Distributed Energy Resources (DERs)

DHAKA, BHUPINDER; KALA, AMANDEEP Power Grid Corporation of India Limited

ID: 1266

Enabling adoption of offshore wind coupled with Green Hydrogen innovation

keywords: Efficiency, Green Hydrogen, Green Ammonia, Offshore wind, Offshore hydrogen singh, kiran (1); Pankaj, Sharma (2); D K, Javeri (3); Naveen, Srivastava (4) 1: POWERGRID, India; 2: POWERGRID, India; 3: POWERGRID, India; 4: POWERGRID, India

ID: 1279

A Convex MPC Approach for the Optimal Management of BESS, Hydrogen Production and Economic Dispatch of RES within Active Distribution Systems

keywords: Active Distribution Systems, Battery Energy Storage, Convex Optimization, Distributed Generation, Energy Management, Energy Management Problem, Green Hydrogen Production, Second-Order Cone Programming.

Useche, Mario (1); Gil, Walter (2); Londoño, Vanessa (2) 1: UPC, Spain; 2: UTP, Colombia

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1364

Leveraging AI techniques to deploy ACOPF as a routine operational practice in the distribution network: A state-of-the-art analysis

keywords: Artificial Intelligence, Distribution Network, Optimal Power Flow

Zubair, Ahmad Opeyemi; Degefa, Merkebu Zenebe

University of Stavanger, Norway

ID: 1353

Smart Energy Meters: a tool for near Real-Time Monitoring of Voltage Stability in Low Voltage Grid with Distributed Energy Resources

keywords: Distributed Energy Resources, Load Flow, LV Grid, Net Metering, Renewable Integration, Simulation, Smart Energy Meter, Voltage Stability

Agarwal, Vineeta; Soni, Ramkishor; Gupta, Ashish; Chakraborty, Ankur Power Grid Corporation of India Limited, India

Wednesday 14th May Technical Paper Sessions (ii)

DRAFT Schedule based on Accepted and Conditionally Accepted Papers as of 15th March 2025

*Final acceptance notifications will be communic*ated by 11th April 2025 and this schedule will be updated accordingly. All accepted submissions are expected to deliver a presentation at the assigned paper session.

08:00 – 10:00 (Room-1) SC B2 session #1

Towers and foundations design and maintenance

Study Committee B2 - Overhead lines

ID: 1176

60 Days of Excellence: Balancing Speed, Sustainability, and Success in the Neemuch-Mandsaur Transmission Line Project".

keywords: Exceptional project Management, Effective Teamwork, Environmental Conservation Innovative problem solving, Safety Considerations.

Rai, Pankaj kumar

POWERGRID corporation of India limited, India

ID: 1189

Adaption of Electric Tower Ascender Equipment for Transmission Line Construction Work keywords: Ascender, Construction, Maintenance, Restoration, Safety-work, Work-efficiency Hotta, Shinji (1); ONODERA, Toshiyuki (1); FUJIMOTO, Yoichi (2) 1: Tohoku Electric Power Network co., inc., Japan; 2: Toasu inc. Japan

ID: 1271

Study on Seismic Control Retrofit of Power Transmission Tower by Pantograph Damper

keywords: Earthquake Response Analysis, Equivalent Damping Rate, Pantograph Damper, Transmission Tower, Vibration Control Retrofit

YAMAZAKI, Motoyuki; TANAKA, Keigo; OSONO, Tomoaki; KAWAMURA, Tomoaki; SHIRAISHI, Tomonori TEPCO POWER GRID Inc. /JAPAN, Japan

ID: 1356

Evaluation of Stresses in Critical Members of Transmission Line Towers During Prototype Testing Using Wired and Wireless Strain Gauges

keywords: Realtime Monitoring, Strain Gauges, Strain measurement, Structural integrity, Wireless Sensors

Rouriya, Indra Singh; Kumar, Satish; Sinha, Nitesh Kumar; Singh, Raj Kumar; Kumar, Abhay; Burra, Vamsi Rama Mohan

Power Grid Corporation of India Ltd, India

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1357

Parallel Giants: The Twin Steel Monopoles in Heart of National Capital Region

keywords: Compact Corridor, Crossing, Monopole, Right of Way, Twin-pole, Urbanisation Gajbhe, Shrikant Govind; Sinha, Nitesh Kumar; Singh, Manoj Kumar; Kumar, Abhay; Burra, Vamsi Rama Mohan

Power Grid Corporation of India Ltd, India

ID: 1358

From Weakness to Strength - Innovating Soil Strength and Corrosion Solutions for Renewable Energy infrastructure in creek salt pan area.

keywords: Stone column, plate load test, creek area, soil strengthening, liquefaction RENU, BIMLESH KUMAR; DWIVEDI, Pankaj Kumar; SINHA, Nitesh Kumar; SINGH, Raj Kumar; KUMAR, Abhay; BURRA, Vamsi Rama Mohan POWER GRID CORPORATION OF INDIA LTD, India

ID: 1381

Navigating the Energy Transition: A Comparative Study of Aging Power Grids in India and the USA keywords: Infrastructure, Investment, Modernization, Policy, Regulation

Joseph, Vipin Jacob; Khajkumar, L K

Power Grid Corporation of India Limited, India

ID: 1386

Use of Monopole & Ultra Narrow base Towers in High RoW area

keywords: Circuit Switching, Caisson Foundation, High Temperature Low Sag Conductor, HTLS, Monopole, Narrow Corridor, RoW, Road Median, Ultra Narrow Base Tower

Mahajan, Amit; Kalra, Chandan; Kumar, Satendra; Suri, Rajesh

Sterlite Power, India

ID: 1395

Advance Design Solution for Transmission Tower Foundations on Steep Slopes

keywords: Steep slopes, Mountainous terrain, Foundation design, STAAD Pro software, Frame structure

DWIVEDI, Pankaj Kumar; PUNDIR, Karanvir Singh; KUMAR, Abhay; BURRA, Vamsi Rama Mohan POWERGRID Corporation of India Ltd., India

08:00 – 10:00 (Room-2) SC B1 session #1

Insulated Cables -1

Study Committee B1 - Insulated cables

ID: 1174

High voltage wet design power cables with aluminum conductor

keywords: high voltage; power cables; XLPE; wet design; aluminum conductor

Hølto, Jorunn (1); Ese, Marit Helen G. (1); Ve, Torbjørn Andersen (1); Hvidsten, Sverre (1); Olsen, Elise (2); Skagemo, Jørgen (2); Haglo, Audun (2); Bengtsson, Magnus (2)

https://cigrenrccsymposium2025.com/

Click <u>here</u> to register now!!

May 12-15, 2025

1: SINTEF Energi AS, Norway; 2: Nexans Norway AS

ID: 1187

Compression and bending test on a three-core HV submarine cable with SZ lay-up

keywords: Bending, Compression, Factory joint, High voltage, Inter-Array cable, Mechanical test, Open helix, Submarine cable, Twisting

CASLINI, Francesco (1); MUELLER-SCHUETZE, Sven (1); FAREMO, Hallvard (2); KLÆBO, Frank (2); MIDTTVEIT, Steinar (3); COLLA, Luigi (1); TROLLI, Alessandro (1) 1: Prysmian, Italy; 2: SINTEF, Norway; 3: Equinor, Norway

ID: 1195

Lifetime Estimation based on HVDC Breakdown Strength of Thin Films Peeled from Fresh and PQ-Tested 525 kV DC-XLPE Cables

keywords: Extruded cable insulation, Peelings, HVDC, Lifetime, Electric breakdown

Gerhard, Silas Merlin (1); Mauseth, Frank (1); Hestad, Øystein (1); Doedens, Espen (2); Jarvid, Markus (2)

1: Norwegian University of Science and Technology (NTNU); 2: Nexans Norway AS

ID: 1202

Advanced Pre-Terminated Dynamic Submarine Cables for Floating Offshore Wind Energy

keywords: Fibre Optic Cable Connector, Floating Offshore Wind, Maintenance, Power Core Connector, Pre-Terminated Submarine Cable

Mueller-Schuetze, Sven (1);Bouvier, Nicolas (2); Mangoni, Marzia (3); Betti, Deborah (3); Miyoshi, Maryelen (3); Pistonesi, Alessandro (3)

1: Prysmian, Germany; 2: Prysmian, France; 3: Prysmian, Italy

ID: 1215

Predicting cables temperatures with probabilistic modelling

keywords: Cable, Offshore, Rating, Submarine, Probabilistic, Temperature, Wind

CWIKOWSKI, Oliver (1); OŁDZIEJEWSKI, Rafał (2); PIATEK, Remi (3); THØISEN, Mads (3); GARCIA, Franciso (3)

1: Ørsted, London, (United Kingdom); 2: Ørsted Polska OF Services, (Poland); 3: Ørsted, Copenhagen, (Denmark)

ID: 1249

Vortex Induced Vibrations (VIV) of an Export Submarine Power Cable: A Holistic Approach

keywords: Free Span, Modal Analysis, Subsea Power Cable, Vortex Induced Vibrations, VIV Delizisis, Panagiotis; Georgopoulos, George; Kopanidis, Anastasios; Pytharouliou, Angelina; Prousanidou, Katerina; Alexandridis, Petros Asso.subsea, Greece

ID: 1421

Evaluation of PD commissioning tests for Dutch (E)HV land cable systems *keywords: Discharge, Measurement, Test, Onsite, Commissioning* Zuijderduin, Roy (1); van Oosterom, Jozua (1); Hermans, Theo (2); Janssen Klomp, Henning (3); Corjanus, Robin (3)

https://cigrenrccsymposium2025.com/

Click <u>here</u> to register now!!

May 12-15, 2025

1: TenneT TSO B.V.; 2: Prysmian; 3: Qirion B.V.

ID: 1435

Impact of MVDC cables on the energy transition

keywords: Cable, MVDC, testing, transfer capacity

Schichler, Uwe (1); Ratheiser, Patrik (1); Lapthorn, Andrew (2); Stewart, Brian (3)

1: Graz University of Technology, Austria; 2: University of Canterbury, New Zealand; 3: University of Strathclyde, Great Britain

08:00 – 10:00 (Room-3) SC C2 session #1

System Operational Challenges and Experiences with Integration of Renewables Study Committee C2 - Power system operation and control

ID: 1101

21 GW offshore wind power in Norwegian waters by 2040. System effects of demand elasticity and grid topology.

keywords: offshore wind, demand-response, transmission grid, North Sea Steiro, Hanna (1); Korpås, Magnus (1); Andresen, Christian Andre (2) 1: NTNU, Norway; 2: SINTEF ENERGIAS, Norway

ID: 1463

Understanding the Corelation Between Wind and Solar Forecast Errors and Demand Forecast Errors in Southern Regional Grid in India

keywords: Southern Regional Grid, Solar Forecasting, Correlation, Wind Forecasting, Variability, Demand Forecast, Forecast error

Baruah, Anusha; Paluru, Manoj Grid Controller of India Limited, India

ID: 1205

Virtual multi-camera sky images for regional solar irradiation forecasts

keywords: Multi-camera systems, Photovoltaic systems, Regional prediction, Renewable energy forecasting, Solar irradiance forecasting

Jakoplić, Alen (1); Franković, Dubravko (2); Plavšić, Tomislav (1); Dobraš, Branka (1) 1: Faculty of Engineering, University of Rijeka, Rijeka, Croatia; 2: Croatian Transmission System Operator (HOPS) Zagreb, Croatia

ID: 1113

Experience from the Nordic Market for Balancing Capacity

keywords: Balancing Capacity, Bidding Formats, Exchange, Pricing, Social Welfare
Stenkløv, Inge (1); Doorman, Gerard (2); Möhr, Jan (1); Bräuner, Line Kamp (3); Hausken, Magnus (4)
1: Statnett SF, Norway; 2: Norwegian University of Science and Technology; 3: Energinet
Elsystemansvar A/S; 4: Optimeering AS

ID: 1184

Analysis of Economic Incentives and Historical Frequency Deviations in the Nordic Power System *keywords: Economic Incentives, Grid Stability, Frequency Control, Electricity Market, Statistical*

Analysis.

Rajeh, Haya; Max, Lena; Agneholm, Evert University West, Sweden

ID: 1350

Multi-year Evolution of the Energy Balance to Optimize the Integration and Operation of Renewable Energy Sources

keywords: Energy System Analysis, Power System Operation, Power System Simulation, Renewable Energy Integration, Renewable Energy Sources

Cuccia, Paolo; Tisti, Pietro; Epifani, Mariella; Papate, Angela; Mosca, Carmelo Terna Rete Italia, Italy

ID: 1313

Solutions for calculating and monitoring minimum operational configuration of thermal power sources on planning software and real-time SCADA/EMS systems in the context of high renewable penetration

keywords: Mininal Thermal Power plants, real-time SCADA/EMS System, Monitoring

Vu, Xuan Khu; Do, Huy Hoang; Pham, Quynh; Phung, Dang Huy; Lai, Viet An; Le, Van Thong; Nguyen, The Van; Tran, My Hung; Vo, Viet Thang; Nguyen, Ngoc Han National power system and market operator company limited, Vietnam

ID: 1371

Transmission Expansion in Energy System Optimization Models - a Comparative Study

keywords: Alternating Current, Direct Current, Energy System, Electricity Grid, Expansion, Infrastructure, Investments, Linear, Mixed-Integer, Optimization, Power Flow, Planning, Transmission

Fischer, Lina; Ziwes, Lutz; Houben, Raphael; Moser, Albert

Institute of High Voltage Equipment and Grids, Digitalization and Energy Economics, RWTH Aachen University, Aachen, Germany

08:00 – 10:00 (Room-4) SC C4 session #3

Power Quality, Transients and EMC Challenges in the Energy Transition Study Committee C4 - Power system technical performance

ID: 1213

System strength impact on harmonic voltage management in transmission systems in relation to IBR (Inverter Based Resources) connections

keywords: system strength, harmonic compliance assessments, harmonic impedance polygons, Inverter Based Resources

Jayatunga, Dr. Upuli (1); Herath, Dr. Chandana (1,2); Peiris, Mr. Kasun (1); Geddey, Dr. Don (1); Peiris, Dr. Jahan (1)

1: TransGrid, Sydney, NSW 2000, Australia; 2: Energy Corporation of NSW, Sydney, NSW 2000, Australia

https://cigrenrccsymposium2025.com/

May 12-15, 2025

ID: 1409

Application of the IEC harmonic allocation framework in an interconnected transmission system: Experiences and Lessons learned

keywords: Harmonics, Limits, Transmission, Meshed, Allocation

Singh, Gaurav Kumar (1); Emin, Zia (1); Meyer, Jan (2)

1: Electric Power Research Institute, United States of America; 2: TUD Dresden University of Technology

ID: 1472

Overview of new transient phenomena arising in power system due to energy transition – EMT analysis of resonance in HVDC-MMC link connected to AC grid

keywords: HVDC-MMC, resonance, non-linearity, overvoltage, EMT simulations

Filipovic-Grcic, Bozidar (1); Xemard, Alain (2); Radecic, Iva (3); Stipetic, Nina (1); Vukovic, Franjo (1); Akiki, Paul (2); Jurisic, Bruno (3)

1: University of Zagreb Faculty of Electrical Engineering and Computing, Croatia; 2: EDF R&D, France; 3: KONČAR – Electrical Engineering Institute, Croatia

ID: 1151

Evaluation of induced voltages occurring during the repair of a high-voltage cable system - A comparison between measurement and simulation

keywords: Cable systems, modelling and simulation, Induced voltages, insulated cables, electromagnetic coupling

Abuaisha, Tareq Saber; Soppe, Bastian; Krokowski, Jan-Nicas; Engel-Kalt, Sebastian; Thomas, Leon; Freye, Claudius; Zhang, Roland Dongping

TenneT TSO GmbH, Germany

ID: 1330

A Statistical Analysis for the Switching Overvoltages in 420kV Siphon Underground Cable Systems: A Study Case in the Norwegian EHV Grid

keywords: Siphon, Insulation Coordination, Sheath Bonding System, Lightning, Switching MATALLANA, Jerome (1); VELITSIKAKIS, Kostas (2) 1: Statnett, Norway; 2: TenneT, The Netherlands

ID: 1424

Failure Investigation Analysis for Switching Overvoltage Stresses in a Cross-Bonding Joint of a 380kV Siphon Underground Cable System in the Netherlands

keywords: Siphon, Failure Investigation, Sheath Bonding System, Switching Overvoltages, Sheath Voltage Limiter (SVL)

Velitsikakis, Konstantinos; Kumar, Anurag; Faragalla, Marina; Zuijderduin, Roy TenneT TSO, Netherlands, The

ID: 1337

EMT Studies for 132kV Offshore Wind Farms with HVDC Connection

keywords: Offshore, Overvoltage, Switching, Transient recovery voltage, Wind energy de Foucaud, Benoît; Michel, Julien; Vu, Thanh

https://cigrenrccsymposium2025.com/ May 12–15, 2025

RTE, France

ID: 1152

First Operational Experience With Vacuum Circuit Breakers in Austria - Measurements and Tests on the 110 kV Voltage Level

keywords: Operational experiences, European green deal, F-gas regulation, Switching, Vacuum circuit breaker, CR divider

Hackl, Philipp (1); Schwalt, Lukas (2); Schürhuber, Robert (1); Belavic, Fredi (2); Schöffer, Werner (3); Klambauer, Reinhard (4)

1: Graz University of Technology, Institute of Electrical Power Systems; 2: Austrian Power Grid AG, Austria; 3: Artemes GmbH; 4: Graz University of Technology, Institute of Electrical Measurement and Sensor Systems

ID: 1220

Impact of extreme geomagnetical storm in the Finnish Transmission Grid

keywords: Geomagnetically Induced Current, GIC, Geomagnetic, Disturbance, Power System Volanen, Ville Esa Akseli

Fingrid Oyj, Finland

ID: 1325

Validation of transmission line compensation and optimization of Neutral Grounding Reactor size for suppression of secondary arcs effectively to ensure successful auto-reclose operations

keywords: Auto-Recloser, Neutral Grounding Reactor, RRRV, Secondary Arc current, Shunt Reactor, SPAR

Prakash, Abhijeet; Jain, Priyam; Ghosh, Saibal; Ghoshal, Srimalya; Dash, Gaurab; Pandey, Vivek; S, Usha

Grid Controller of India Ltd., India

08:00 – 10:00 (Room-5) SC D2 session #1

Information systems and services 1 (AG D2.01 Core business)

Study Committee D2-Information systems telecommunications and cybersecurity

ID: 1251

Advancement of Demand and Supply Forecasting Technology in Renewable Energy

keywords: Energy Aggregation, Digital Transformation, AI, Timeseries Recognition

Saeki, Kazuya; Sakuraba, Kotaro; Miyagi, Tomoya Tohoku Electric Power co.,inc., Japan

ID: 1258

Utilizing Generative AI and RAG for Knowledge Transfer in the Electric Power Industry

keywords: Retrieval-Augmented Generation, Large Language Model, Generative AI, On-premises Data Integration, Graph-based Knowledge Structure

NAMBA, Eijiro

Electric Power Development Co., Ltd., Japan

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1288

Digital technology for analysing the correctness of relay protection and automation operation in real time

keywords: CIM, Fault event analysis, Integration, Misoperation detection, Relay protection and automation

Malakhov, Evgeniy (1); YASKO, Dmitrii (1); GERDT, Diana (1); FEDOROV, Oleg (2)

1: «System Operator of the United Power System», Joint-stock Company, Russian Federation; 2: «RTSoft - Smart Grid», OOO, Russian Federation

ID: 1294

PG IMPACT: Accelerating Renewable Energy Integration into India's Transmission System Through Unified Control and Big Data Integration

keywords: PG IMPACT, Renewable Energy (RE), Unified Control, Big Data Integration, Project Management Real-time Data Analysis, Capital Expenditure (CAPEX), Just-in-Time Supply Management AI Algorithms, Project Health Index

GUPTA, PRIYANKA; Sathyanarayana, S V S; Chaudhary, Shivraj POWERGRID CORPORATION OF INDIA LTD, India

ID: 1319

Requirements for Digital Transformation in Power Grids, Especially for Digital Twins

keywords: Digital Twin, Digitalization, Data Management, Regulation, Asset Administration Shell

Aumann, Erhard (1); Eyrich, Wolfgang (2); Fischer, Bastian (3); Häger, Ulf (4); Hoppe-Oehl, Heinrich (5); Palaniappan, Rajkumar (4); Schuy, Mathias (2)

1: Siemens AG, Germany; 2: Entegra GmbH, Germany; 3: Maschinenfabrik Reinhausen GmbH, Germany; 4: TU Dortmund University, Germany; 5: University of Wuppertal, Germany

ID: 1401

General approaches to the development of advanced power system modelling tools

keywords: Common information model, Modelling tools, Power system modelling Beliaev, Nikolai; Bogomolov, Roman

SO UPS OF RUSSIA, Russian Federation

ID: 1402

Intelligent Inspection of Substation Assets and Use of Augmented Reality in POWERGRID

keywords: Intelligent Inspection, Digitalization, QR, Rugged Tablet, Augmented Reality, Digital Headgear, Substation maintenance

Paul, Devaprasad; Jha, Deo Nath; Sahu, Kuleshwar; Srivastava, Naveen Power grid corporation of india ltd, India

ID: 1408

Digital Twins for DSOs and Consumers Coordination and Interoperability: Problem statement and Challenges

keywords: Digital Twins, Energy Consumers, Flexibility Markets, DERs, CIM Standards, Grid Integration Nepsha, Fedor (1,2); Nebera, Alexey (1); Shubin, Nikolay (1); Voronin, Vyacheslav (2) 1: RTSoft Smart Grid, Russian Federation; 2: T.F. Gorbachev Kuzbass State Technical University

ID: 1431

Virtual Reality and gamification as tools for operation and maintenance of Power Transmission Lines - A practical case

keywords: Maintenance, Operation, Transmission Lines, Virtual Reality ARAUJO, JOSIAS MATOS DE ENG SMART LEAD, Brazil

10:30 – 12:30 (Room-1) SC B2 session #2

Conductors and fittings, crossings, vibrations and icing

Study Committee B2 - Overhead lines

ID: 1233

Wind-induced conductor motion on a long fjord crossing – Preliminary results from a novel measurement approach

keywords: Aeolian Vibration, Damping, Conductor Motion, Crossing, Fjord, Monitoring, Wind, Enhancing Lifespan

Adum, Boris (1); Rocha, Pedro H. C. (2); Matene, Elhacene (2); Paradis, Jean-Philippe (2) 1: Statnett SF, Norway; 2: PLP CANADA

ID: 1277

Development of multi-function conductor

keywords: Conductor, Snow, Wind pressure, Development

MATSUDA, Yuta (1); SHIRAISHI, Tomonori (1); TAKADA, Noriyuki (1); Suga, Nobuaki (2); Takahashi, Tadahiro (2); Enaka, Taisei (2)

1: TEPCO Power Grid, Inc., Japan; 2: Sumitomo Electric Industries, Ltd.

ID: 1290

Conductor Optimization for +/-350kV HVDC Transmission system for evacuation of 13 GW of RE power from renewable energy parks in Ladakh, India

keywords: Altitude correction factor, Conductor bundle selection, Extreme altitude, Galloping, HVDC Link

KANT, CHANDRA; SINGH, ASHISH KUMAR; JHA, NIKHIL; SINGH, MANOJ KUMAR; KUMAR, ABHAY; BURRA, VAMSI RAMA MOHAN

POWER GRID CORPORATION OF INDIA LIMITED, India

ID: 1362

A Water Balance-Based Model for Simulating In-Cloud Icing on Overhead Lines

keywords: In-cloud icing, overhead power lines, ice loads, visibility, liquid water content, energy transition, grid resilience, simulation models

ULLOA JIMENEZ, Erick; STEEVENS, Stefan; UNTERFINGER, Jeremy

Amprion GmbH, Germany

ID: 1378

Tackling Overhead Transmission Line Grounding System Challenges through Introduction of Mechanisms for Enhanced Grounding Management and Maintenance Processes

keywords: overhead transmission line, grounding system, asset management, process reengineering, corrosion, maintenance

Bečan, Miha; Tomažič, Roman; Antončič, Mitja; Osolin, Jošt; Kerin, Uroš

ELES, d.o.o., Slovenia

ID: 1397

Inovative Monitoring Systems for High Voltage Power Lines: Laser Sag Meter and Electric Line Ice Sag Accretion monitor

keywords: Conductor Rotation monitoring, High Voltage Overhead Line, Ice Accretion Monitoring, Image Analysis, Online Monitoring

Golinelli, Elena; Bartalesi, Daniele R.S.E. S.p.A., Italy

ID: 1454

Optimizing Overhead Line Maintenance: Splice and Connector Strategies

keywords: Connector, Overhead lines, Maintenance, Strategy, Splice

Hassanipour, Meysam

Hydro-Quebec, Canada

ID: 1460

Survey of residual performance of conductors, fittings, tower components and insulators after removal of 220 kV long span overhead line across the Straits

keywords: Long, Span, Crossing, Straits, Conductors, Fittings, Towers, Insulators, Residual, Performance, Harsh, Environment

Yamanaka, Tetsuya

Electric Power Development Co., Ltd., Japan

ID: 1485

Influence of Broken Wire on Multistrand Core

keywords: Composite, Multistrand, Overhead Lines (OHL), Polymeric Matrix Composites (PMC), Residual Strength, Structural Integrity, Tensile Strength, Transverse Compression, Trapezoidal Hassinen, Antti (1); Mora, Luca (2); Peroni, Davide (2); Mimo, Debora (2); Kloster, Heini (1) 1: Exel Composites, Finland; 2: De Angeli Prodotti, Italy

10:30 – 12:30 (Room-2) SC B1 session #2

Insulated Cables -2

Study Committee B1 - Insulated cables

ID: 1217

Active Monitoring of cable temperature to facilitate overplanting

keywords: Overplanting, temperature monitoring, export cables, operational experience **de Vries, Frank; van Oosterom, Jozua**

https://cigrenrccsymposium2025.com/

May 12-15, 2025

TenneT TSO, Netherlands, The

ID: 1182

Survey of test methods and measurement performance to assess arc hazards in cable components

keywords: Arcing, Fault, Cable, Accessory, Insulation, Hazard, Design, Test, Measurement, High Current, Experiments

Cuppen, André N. (1,2); Levine, Jody P. (3); Nair, Nirmal-Kumar C. (1)

1: University of Auckland, New Zealand; 2: Powerco, New Zealand; 3: Hydro One, Canada

ID: 1185

Next Generation Integrated Platform for the management of HV assets

keywords: HV Cables, Monitoring, risk avoidance, RTTR

Gaspari, Roberto (1); Andre, Aymeric (2)

1: Nexans Norway AS, Norway; 2: Nexans France SA, France

ID: 1196

Behaviour of Underground Cable Systems under Large Disturbances

keywords: Climate Change, Global Warming, Large Disturbances, Mitigation Methods, Underground Cable Systems.

Orton, Harry

OCEI, Canada

ID: 1198

"Heritage Meets Innovation: Varanasi's Power Transformation"

keywords: Cultural preservation, Improved Power quality, Underground cabling, Urban renewal, Wireless city

Rai, Pankaj kumar POWERGRID corporation of India limited, India

ID: 1284

Dynamic Profile Selection for Mitigating Dielectric Stresses in Bipolar HVDC MIND Cables

keywords: Cable, direct current, dynamic, submarine, optimization

Reinikainen, Emma; Rantanen, Jussi; Nepola, Kimmo Fingrid Oyj, Finland

ID: 1370

DAS for ultra-long submarine interconnectors and cables keywords: DAS, Fault, Location, Monitoring, Long-range Brenne, Jan Kristoffer; Rønnekleiv, Erlend Alcatel Submarine Networks Norway

10:30 – 12:30 (Room-3) SC C2 session #2

Tools and Methods for Congestion Management and Operational Planning

Study Committee C2 - Power system operation and control

ID: 1105

Evaluation of DLR for each span of transmission lines using wind condition estimation results - Consideration on the necessity of comprehensive wind condition assessment in DLR -

keywords: Dynamic Line Rating (DLR), wind condition analysis

Shimoo, Takahiro; Saito, Keita; Ueda, Takashi; Ohnari, Takaaki; Kase, Takahiro Toshiba Energy System & Solutions, Japan

ID: 1117

Leveraging Thermal Reserves of HVDC Underground Cables in Curative System Operation – A Scenario-based Approach

keywords: Cable, Curative, Congestion Management, HVDC, Scenarios, Thermal Reserves Gatermann, Carsten Thomas; Schlegel, Steffen; Westermann, Dirk Technische Universität Ilmenau, Germany

ID: 1191

Evaluation of TATL Potentials Based on Line Loading and Reaction Time

keywords: Curative, Dynamic Line Rating, Higher Utilization, Overhead Line, Permanent Admissible Transmission Loading, Reaction Time, Temporary Admissible Transmission Loading, Threshold Value Sennewald, Tom (1); Wasserab, Andreas (1); Thiele, Mark (1); Schneider, Thomas (2); Beißel, Volker (2); Puffer, Ralf (3)

1: TenneT TSO, Germany; 2: Amprion, Germany; 3: RWTH Aachen University, Germany

ID: 1302

DYNLAST – Dynamic line rating

keywords: Dynamic Line Rating, Laser Scanning, Overhead Lines, Utility Grid, Weather API Smidsrød, Dan

Glitre Nett AS, Norway

ID: 1263

A Comprehensive Solution Framework for Multi-node Optimal Power Generation Planning of Vietnam Power System to resolve Regional Grid Congestion Problem

keywords: Grid congestion, Hydrothermal, Multi-node Simulation, Generation Planning, Optimization, Optimal Power Flow, Unit Commitment

Nguyen, Quoc Trung; Pham, Quynh; Nguyen, Minh Quang; Hoang, Anh Tuan; Nguyen, The Van; Nguyen, Sy Quan; Duong, Tuan Anh; Nguyen, Anh Tu; Nguyen, Duc Thanh National power system and market operator company limited, Vietnam

ID: 1283

The Various Constraint Relief Strategies of South Korea's Massive Generation Surplus Areas

keywords: Constraint Relief, Generation Constraints, Renewable Energy, Special Protection Schemes (SPS), Static Synchronous Compensators (STATCOM), Thyristor Controlled Series Capacitors (TCSC) Joo, Won; Song, Tae-Yong; Choi, Hong-Seok

Korea Power Exchange (KPX)

ID: 1110

Robustness indicators for the Nordic power system

keywords: Robustness, Resilience, Transfer Corridors, Utilisation, Availability Hillberg, Emil; Lindquist, Tommie; Bengtsson, Gustaf; Weihs, Erik RISE Research Institutes of Sweden, Sweden

ID: 1170

Outage planning in a converter dominated grid – A Finnish case study and lessons learned

keywords: Converter Stability, Curtailment, Outage Planning, Power System Operation Nikkilä, Antti-Juhani; Mäkihannu, Tuomo; Salonen, Otso; Klaver, Samuel; Hytti, Valtteri; Peltoketo, Suvi; Korhonen, Riku Fingrid Oyj, Finland

ID: 1351

Demand Simulator of energy transition variables for the Spanish electric power system

keywords: Energy Transition, Self-Consumption, Electric Vehicle, Green Hydrogen, Heat Pump del Río Molina, María Cruz; Rodríguez Aparicio, Ana Red Eléctrica, Spain

10:30 – 12:30 (Room-4) SC C4 session #4

Dynamic Performance of Power Systems in the Energy Transition

Study Committee C4 - Power system technical performance

ID: 1411

Impact of Voltage Difference between IBRs and Point of Interconnection on Design and Performance of Renewable Plants

keywords: Renewable, Collector system, Voltage drop, Low voltage ride through, High voltage ride through

Kishan, Raj; Jain, Priyam; Dash, Gaurab; Singh, Gaurav; Saha, Arpan; Shukla, Rahul; Pandey, Vivek Grid Controller of India limited, India

ID: 1163

Investigation of Inertia Services on Grid Stability with Low-Inertia Systems in Victoria

keywords: Victorian Network, AEMO, Low Inertia, Inertia Services, Grid Forming Inverters, Grid Following Inverters, Synchronous Generators, Synchronous Condensers, EMT Modelling, System Planning, System Strength

Srimannarayanan, Shriramaprasad; Caspersz, Nathan AEMO, Australia

https://cigrenrccsymposium2025.com/

May 12-15, 2025

ID: 1256

Stability Analysis of Grids with a High Share of IBRs – Evaluation of Parametric Interdependencies

keywords: Electromagnetic Transients, Grid-Forming, Grid Planning, IBR, System Stability Wenig, Simon (1); Barth, Daniel (1); Haeusler, Kristof (1); Goertz, Max (1); Just, Hendrik (2); Kuechler, Sebastian (2); Schoell, Christian (3); Lindner, Marco (3); Stenzel, Daniel (4); Vennemann, Klaus (5); Knechtges, Martin (5)

1: Mosaic Grid Solutions GmbH, Germany; 2: 50HertzTransmission GmbH, Germany; 3: TransnetBW GmbH, Germany; 4: TennetTSO GmbH, Germany; 5: Amprion GmbH, Germany

ID: 1347

Validation of Implemented Synthetic Swing Equation, Inertia Constant and Damping Coefficient of Grid Forming Batteries Against Conventional Synchronous Machine Swing Equation

keywords: Grid Forming Battery, Synthetic Swing Equation

Aghanoori, Navid; Rotenko, Nicholas Transgrid, Australia

ID: 1349

Comparison Between Synchronous Condensers and Grid Forming BESS in Providing System Strength Support to IBRs in Weak and Strong Power Systems Using EMT Simulation

keywords: Grid Forming Battery, IBR, Synchronous Condenser, System Strength

Aghanoori, Navid (1); Peiris, Jahan (1); Steinfeld, Jesse (1); Yong Kwen Chong, Jeffrey (1); Wang, Yunbo (2); Weaver, Chris (1); Liang, Xinyu (2); Ranmanna Dewayalage, Imanka (1); Zhao, Jinping (1); Arayamparambil Vinaya Mohanan, Vishnu (1)

1: Transgrid, Australia; 2: Manitoba Hydro International

ID: 1340

Optimum mix of Inertia by Emulation-controls and spinning machines for weak grid conditions with High Renewable energy penetration- A case study of a part of Indian grid network

keywords: Virtual synchronous generator, Synchronous condenser, Synchronous power controller, Battery energy storage

MISHRA, PARIKSHIT; MAZUMDAR, BHASWATI; TYAGI, PUNEET; SEN, SUBIR POWERGRID CORPORATION OF INDIA, India

ID: 1471

Optimal Power Supply Strategy for a Near Shore Archipelago in NEOM

keywords: Interconnection, Island, Grid, Reliability, Transmission Bhattarai, Roshan

NEOM Energy & Water (ENOWA), Saudi Arabia

10:30 – 12:30 (Room-5) SC D2 session #2

Information systems and services 2 (AG D2.01 Core business) Cybersecurity 1 (AG D2.02 Cybersecurity)

Study Committee D2-Information systems telecommunications and cybersecurity

ID: 1441

Hyperconvergence in OT Networks: Implementation in ANDE's SCADA Systems and Feasibility of Operating with Virtualized Protection and Control IEDs in Substations

keywords: CPC, IED, IEC61850, OT, PAC, SCADA, SDS, SDN, Hyperconvergence, HCI, Virtualization
Ruiz Diaz, Chrystian (1); Loreiro, Matias (1); Davalos, Enrique (2); Gonzalez, Fernando (1); Rojas,
Diego (1); Fernandez, Ubaldo (1); Adorno, Cesar (1); Paiva, Enrique (1); Salas, Percy (1)
1: Administracion Nacional de Electricidad - ANDE, Paraguay; 2: Facultad Politécnica - UNA, Paraguay

ID: 1102

Cybersecurity in renewable evacuation interconnections

keywords: Renewables, Interconnection, Cybersecurity, Intrusion Detection System Feijoo-Martinez, Juan Ramon; Castro-Fernandez, Mario

REDEIA, Spain

ID: 1123

Security of Wide-Area Monitoring, Protection, and Control Systems: Evaluation of Stealthy Data Integrity Attacks

keywords: power system, wide-area monitoring, protection, control, cybersecurity, attack, false data injection

Mishchenko, Denys (1); Oleinikova, Irina (1); Erdodi, Laszlo (2)

1: Norwegian University of Science and Technology. Department of Electric Energy; 2: Norwegian University of Science and Technology. Department of Information Security and Communication Technology

ID: 1161

DCDIAS: Decentralized cross-domain identity authentication scheme for numerous power terminal equipment

keywords: decentralization, power business, cross-domain authentication, decentralized identifier Yao, Shuang; Zhu, Chaoyang; Zhu, Yayun; Hu, Baiji; Zhang, Dahua; Cao, Jingyi; Lin, Ziqing China Electric Power Research Institute Co., Ltd., China, People's Republic of

ID: 1190

Encrypted Traffic Identification in Power IoT based on One-Dimensional CNN with Batch Normalization

keywords: Encrypted Traffic, Power IoT, CNN, Batch Normalization

Li, Menglin; Zhu, Chaoyang; Zhang, Dahua; Xu, Qiang; Zhu, Yayun; Hu, Lizhi; Hu, Baiji; Yao, Shuang China Electric Power Research Institute Co., Ltd., China, People's Republic of

ID: 1322

Information Security Laboratory at Power Grid Corporation of India Limited

keywords: Power System Automation, Operational Technology, Cybersecurity, Testbed, Situational Awareness

Sarkar, Sajal; Kumar, Santosh; Tiwari, Yogendra

Power Grid Corporation of India Limited, India

ID: 1326

Asset Inventory Management for Information Security Preparedness

keywords: Asset Inventory, Asset Management, Software/Hardware, Information Security, Information Security Risk

Sarkar, Sajal; ., Ankit

Power Grid Corporation of India Limited, India

ID: 1342

Dataset Manipulation for Cross-Substation Transfer Learning: A Promising Path to Enhanced Cybersecurity

keywords: Cybersecuity, IEC 61850, IEC 62351, Machine learning, Intrusion detection system

Natvig, Filip (1); Ericsson, Göran N. (1); Nordström, Lars (2)

1: Uppsala University, Sweden; 2: KTH - Royal institute of technology

13:30 – 15:30 (Room-1) SC B3 session #1

Session #1: Study Committee B3 - Substations and electrical installations

ID: 1106

Application of BS EN 1991-1-4 for Specification of Substation Equipment on Severe Wind Speed Locations

keywords: Severe wind, climate change, extreme weather, substation equipment, BS EN 1991-1-4, terminal load

Beretta, Felipe; Yates, David; Gokulachandran, Mohan; Koehler, Fabian SSEN Transmission, United Kingdom

ID: 1145

Substation Auxiliary Power Systems - A New Approach to Supply Selection

keywords: LV AC, Auxiliary Power, Station Services, PVT, SSVT, Low Voltage, Substation Design, Energy Hubs

Johnson, Perry Willis; Beretta, Felipe

SSEN Transmission, United Kingdom

ID: 1156

Fiber Optic-based Acoustic Emission Sensing Technology to Online Detect, Monitor, and Localize Partial Discharge in 400kV Cable Terminations

keywords: Cable termination, Extra high voltage (EHV), Fiber optic acoustic emission (FOAE) sensing technology, Field test, Online monitoring, OptiFender, Partial discharge (PD)

https://cigrenrccsymposium2025.com/ May 12–15, 2025

Zadeh, Aydin R (1); Hashemi-Dezaki, Hamed (1); Steffansen, Simon Dalsgård (2); Canada, Francisco Javier (1); Niemann-Larsen, Joachim (2); Lebedev, Nikita (1) 1: Optics11 B.V., The Netherland; 2: Energinet, Denmark

ID: 1211

Assessment of Structural Robustness for modern Gas-Insulated Switchgear in Offshore Substations.

keywords: Gas Insulated Switchgear, Offshore Wind, Finite Element Method, Fatigue, Vibrations Ramos Cordero, Edgar Armando; Nehring, Thilo Siemens Energy Global GmbH & Co. KG, Germany

ID: 1229

Installation, testing and commissioning of Optical Fiber Network within GI conduit/pipe to mitigate rodent induced vulnerabilities

keywords: Cable Trench, Fault diagnosis, HVDC, Maintenance, Mitigation Measures, Optical Fiber KUMAR, ALOK (1); SUBRAMANI, Madhan Kumar (2); RAJAN, ANAND (3) 1: Powergrid Corporation of India Limited; 2: BHEL; 3: Powergrid Corporation of India Limited

ID: 1240

Design considerations of floating offshore substations for renewables

keywords: FEM analysis, Floating, Offshore, Renewables, Substation Laneryd, Tor (1); Andrew-Morlet, Genaro (2); Johansson, Joakim (1); Hosain, Lokman (1); Scian, Ilario (3); Keller, Markus (4); Huang, Hui (5)

1: Hitachi Energy, Sweden; 2: Hitachi Energy, Germany; 3: Hitachi Energy, Italy; 4: Hitachi Energy, Switzerland; 5: Hitachi Energy, Canada

13:30 – 15:30 (Room-2) SC B1 session #3

Insulated Cables -3

Study Committee B1 - Insulated cables

ID: 1377

Seabed interference monitoring on power cables using DAS

keywords: DAS, Cable, Trawler, Anchor, Protection

Morten, Jan Petter (1); De Rijcke, Simon (2); Brenne, Jan Kristoffer (1); Quaghebeur, Ward (2);

Reynaert, Bjorn (3); De Baere, Bram (3)

1: Alcatel Submarine Networks Norway; 2: Marlinks; 3: Norther

ID: 1387

Thermomechanical Modelling of Cables in Flexible Installations

keywords: Buckling, Flexible Installation, Thermomechanical Thrust, Underground Cable Liangou, Theodora; Tzortzopoulos, Georgios; Koumlis, Stylianos; Chatzipetros, Dimitrios Hellenic Cables, Greece

ID: 1404

Installation of underground cables through peatland and challenging terrain to support decarbonisation of a remote Scottish Island

keywords: Peat, Settlement, Surveys, Tromino, Rock, Cable Installation, Peat Slide, High Voltage Cables

Keane, Tom; Anild, Sara; Scott, James; Burke, Oisín

BakerHicks, United Kingdom

ID: 1437

Transient Effects of DC Fault Current Interruption on HVDC Cable Performance in Multiterminal Network

keywords: DC Circuit Breaker, Electromagnetic Transients, HVDC Cables, Multi-terminal HVDC Grid
Karmokar, Tanumay Rabindranath (1,2); Popov, Marjan (2)
1: TenneT TSO GmbH, Germany; 2: Delft University of Technology, The Netherlands

ID: 1451

Monitoring the shape of a subsea dynamic cable from the floater continuously in time and space *keywords: sea trials, dynamic, cable, shape, monitoring*

Maison, Antoine (1); Roulet, Mélanie (1); Ryden, Vilhelm (2); Clément, Pierre (3); Di Battista, Andrew (4); Hebden, Guy (5); Chassagne, Dominique (6); Piot, Xavier (7)

1: France Energies Marines, France; 2: NKT, Sweden; 3: Febus Optics, France; 4: Viper Innovations, UK; 5: Sonardyne, UK; 6: Cadden, France; 7: Eolink, France

ID: 1469

Novel Anomaly Detection Machine Learning Based Model for Real-Time Monitoring of Transmission Cables Using DTS

keywords: transmission cables, data-driven monitoring, distributed temperature sensing, machine learning, anomaly detection, real-time monitoring, statistical validation, dynamic rating, overload prediction

Holbøll, Joachim

Denmark Technical University, Denmark

ID: 1474

Experimental validation of wave propagation characteristics in EHV cables

keywords: Travelling waves, propagation velocity, high frequency attenuation, fast transients, EMTP, cable systems

COLLA, Luigi Prysmian

13:30 – 15:30 (Room-3) SC C2 session #3

Inertia Monitoring, DSA and other Tools for Enabling System Operations with Increasing IBR

Study Committee C2 - Power system operation and control

ID: 1315

A tool built-in web platform and exchanging data with SCADA/EMS system for automatic assessment of voltage regulation in power plants

keywords: SCADA, SCADAweb, operarion post-check.

Nguyen, Duc Ninh (1); Lai, Viet An (1); Pham, Quynh (1); Vo, Minh Long (1); Phung, Dang Huy (1); Le, Van Thong (1); Do, Huy Hoang (1); Vo, Van Luom (2); Hoan Nguyen, Kim Huy (2) 1: National power system and market operator company limited, Vietnam; 2: National System and Market Operation Company – Southern Branch

ID: 1193

Inertia in the Dutch Power Grid: Trends and Implications

keywords: Inertia, power system stability, system operation, grid planning, frequency stability Boricic, Aleksandar; Frohn, Sam; Liu, Shiyi; Bos, Jorrit TenneT TSO B.V., Netherlands, The

ID: 1206

Inertia Estimation with Increasing Inverter-based Generation on the Grid

keywords: Frequency Stability, Grid Inertia, Inertia Estimation, Renewable Energy, System Strength Farmer, Warren James; Minnaar, Ulrich; Jooste, Frans; Kgosiemang, Thabiso Eskom Holdings SOC Ltd, South Africa

ID: 1210

A global grid frequency measurement technique for operational planning studies keywords: Constraints, Control, Frequency, Renewables, ROCOF Paoli, Joshua Peter; Wembridge, Christopher James TasNetworks, Australia

ID: 1218

Real-time calculation and visualization of corrective actions for N-1 secured Nordic system operation

keywords: N-1 analysis, Real-time, Security-constrained OPF, System Protection Schemes Stanković, Stefan (1); Haugdal, Hallvar (2); Ackeby, Susanne (1) 1: RISE Research Institutes of Sweden, Sweden; 2: Sintef, Norway

ID: 1311

Development and Operation of a novel tool for real-time monitoring & intraday forecasting of reactive power demand & reserve in Vietnam power system

keywords: Reactive power demand & reserve, monitoring & forecast, voltage control, integration of IT-OT

https://cigrenrccsymposium2025.com/

May 12-15, 2025

Nguyen, Duc Ninh (1); Phung, Dang Huy (1); Dinh, Xuan Duc (2); Vo, Minh Long (1); Lai, Viet An (1); Nguyen, Son Tung (1); Le, Van Thong (1); Do, Huy Hoang (1); Vo, Viet Thang (1); Dinh, Nhat Minh (1) 1: National power system and market operator company limited, Vietnam; 2: Electricity of Vietnam

ID: 1158

Modelling of distributed generation in the EMS/SCADA system

keywords: Distributed Generation, EMS/SCADA, Forecasts, Grid Control, Grid Modell, Modelling, Operational Planning, PV, RES, Schedules

Slezsák, István; Nagy Dr., Melinda; Belső, Bence MAVIR Ltd., Hungary

ID: 1312

Strengthening SCADA and EMS Systems for a Sustainable Energy Transition: Experience in Vietnam

keywords: SCADA quality assessment, state estimator tuning, EMS, automation

Nguyen, Duc Ninh (1); Phung, Dang Huy (1); Dinh, Xuan Duc (2); Lai, Viet An (1); Le, Van Thong (1); Nguyen Thi, Thanh Binh (1); Pham, Trung Thanh (1); Nguyen, Ba Hoai (1); Hoang, Anh Tuan (1) 1: National power system and market operator company limited, Vietnam; 2: Electrical Power Trading Company

ID: 1299

Manage Grid Uncertainties using Cloud Technologies

keywords: Energy Transition, Power Grid, Uncertainty Management, Cloud Computing, Data Architecture, Data Analytics

Wang, Congcong; Sattler, Evan; Zhao, Long; Steider, Stephanie

MISO, United States of America

13:30 – 15:30 (Room-4) SC C4 session #5

Enhanced Solution Methods for Performance Analysis of Modern Power Systems Study Committee C4 - Power system technical performance

ID: 1188

Improved Eigenvalue Sensitivity Method for Designing Power System Damping Controllers

keywords: Controller Design, Eigenvalue Sensitivity, Oscillation Damping, Small-Signal Stability Cedenilla Bote, Alejandra (1); Rouco, Luis (3); Sigrist, Lukas (3); Guironnet, Adrien (2); Torresan, Gilles (2); Carpentier, Philippe (2)

1: CRESYM, Belgium; 2: RTE, France; 3: IIT Universidad Pontificia Comillas, Spain

ID: 1134

A Case Study on Torsional Resonance Stability Amidst Series Capacitor Upgrades in the Swedish Power System

keywords: Impedance Scan, Interaction, Resonance, Speed Perturbation, Subsynchronous, Torsional Behrouzian, Ehsan; Rogersten, Robert; Lennerhag, Oscar; Råström, Stefan Svenska Kraftnät, Sweden

https://cigrenrccsymposium2025.com/ May 12–15, 2025

ID: 1407

Indicator-based identification of critical grid situations for voltage stability analyses in future transmission grids

keywords: Complexity reduction, Discriminant Analysis, Grid Situation Selection, Stability Indicators, Voltage Stability

Tepe, Sophia; Fester, Christian; Moser, Albert

Institute of High Voltage Equipment and Grids, Digitalization and Energy Economics (IAEW), RWTH Aachen University, Germany

ID: 1422

Investigation of Non-Linear and Linear Optimal Reactive Powerflow Models for Voltage Control in Future Transmission Grids

keywords: Voltage Control, Grid Operation, Non-Linear Optimization, Linear Optimization, Optimal Reactive Power, Transmission Grid

Fester, Christian; Engel, David Alexander; Preuschoff, Felix; Moser, Albert IAEW, RWTH Aachen University, Germany

ID: 1253

3-Phase short-circuit fault current calculation method considering contribution of inverter source

keywords: Inverter Based Resource (IBR), Power Flow Calculation, Short Circuit Current Jeong, Soseul; Lim, Saehwan; Yoo, Hyeongjun

Korea Electrotechnology Research Institute, Korea, Republic of (South Korea)

ID: 1390

Design considerations on short-circuit impact of HVDC converter and other IBR with grid forming control

keywords: Power system planning, isolated operation, HVDC systems, short circuit calculation, electromagnetic transients calculation

Patynowski, Daniel; Hibberts-Caswell, Richard; Oprea, Liliana; Popescu, Victor Fichtner Gmbh&Co KG, Germany

ID: 1416

Determination of Sub-Transient Short-Circuit Current Equivalents of IBRs

keywords: Short-circuit current, IBR, sub-transient, Wavelet transform, Space vector
Bisseling, Alexander (1); Lindner, Marco (2); Mehta, Shashank (2); Oldehinkel, Niklas Phil (2); Schöll,
Christian (2); Suriyah, Michael (1); Leibfried, Thomas (1)
1: Karlsruhe Institute of Technology (KIT), Germany; 2: TransnetBW GmbH, Germany

ID: 1335

How reliable are offshore transmission when RE generation power is not 100% of its capacity? - A case study for hybrid offshore wind and PV in the North Sea

keywords: Availability, Cable reliability, Hybrid offshore, Offshore Solar PV, Failure Rate

HERNANDEZ-MATHEUS, Alejandro; Prusty, Pratikshya; Perez, Ainhoa Maria Blasco; Fuglsang, Nicklas; Gonzalez, Ana; FARAJIFARD, Amir

Ramboll

13:30 – 15:30 (Room-5) SC D2 session #3

Cybersecurity 2 (AG D2.02 Cybersecurity)

Telecommunications 1 (AG D2.03 Telecommunications)

Study Committee D2-Information systems telecommunications and cybersecurity

ID: 1383

Quantum-resistant grid communications with enhanced MACsec

keywords: MACsec, quantum resistant, Cryptographically Relevant Quantum Computer, Asymmetric encryption, Symmetric Encryption

Chan, Hansen; Chan, Hansen

Nokia, Canada

ID: 1391

An Advanced Cyber-Physical System Security Testbed for Substation Automation

keywords: Cyber-Physical, Security, System, Substation, Automation, Testbed

Herath, Akila (1); Liu, Chen-Ching (1); Hong, Junho (2); Girdhar, Mansi (2)

1: Virginia Polytechnic Institute and State University; 2: University of Michigan Dearborn

ID: 1415

Demystifying IT-OT Convergence: Strengthening Critical Infrastructure Security Through DMZ Implementation and Cross-Domain

keywords: Demilitarized Zones, IT-OT convergence, IT-OT collaboration MANYAPETSA, Kgomotso; BIYELA, Thuthukani

MANTAFETSA, REUTIOLSO, DITELA, HIULIL

Eskom/NTCSA, South Africa

ID: 1438

Implementation of the Security Information and Event Management (SIEM) System in ANDE's OT Network

keywords: Cybersecurity, SIEM, OT Network, Vulnerability mitigation, SCADA Loreiro Quevedo, Ricardo Matias; Ruiz Diaz, Chrystian; Mujica, Hugo Administración Nacional de Electricidad, Paraguay

ID: 1111

Leveraging MQTT and cloud technology for effective continuous online condition monitoring of transformers

keywords: Cybersecurity, Cloud, Condition monitoring, Data collection, Data visualization, Information systems, IoT, Monitoring, Network infrastructure, Offshore, Telecommunications Mellin, Toni (1); Van der Broeck, Stephan (2); Mitjonen, Jarno (1); Funk, Rolf (2)

1: Vaisala Oyj, Finland; 2: RheinNetz GmbH, Germany

ID: 1116

On the utilization of wireless transport in mission-critical packet-based operational networks for power utility

keywords: Packet, WAN, MPLS-TP, wireless, microwave, teleprotection, distance protection, differential protection, synchronization, Quality-of-service, QoS, adaptive modulation.

https://cigrenrccsymposium2025.com/ May 12–15, 2025

Lucente, Eugenio (1); Colosimo, Alessio (1); Baechli, Ramon (1); Bergling, Johannes (2); Monti, Paolo (2)

1: Hitachi Energy, Switzerland; 2: Ericsson

ID: 1131

Teleprotection for DER over cellular networks

keywords: DER, teleprotection, LTE, 5G, slicing Costa, Jorge UTE, Uruguay

ID: 1155

Verification of wide-area wireless communication technology using Wi-Fi HaLow

keywords: IEEE802.11ah, LPWA, Private LoRa, Smart Maintenance, Wi-Fi HaLow

SUZUKI, Eisuke (1); SUZUKI, Yoshikazu (1); KAMATA, Kyoya (2); KANEKO, Hirokazu (3); SHISHIDO, Naoya (3); KUROSAWA, Kazuki (4)

1: Tohoku Electric Power Co., Inc.; 2: Tohoku Electric Power Network Co., Inc.; 3: Tsuken Electric Ind Co., Ltd.; 4: Tsuken Engineering Service Co., Ltd.

16:00 – 18:00 (Room-1) SC B3 session #2

Session #2: Study Committee B3 - Substations and electrical installations

ID: 1243

Design and Qualification of Floating Offshore Wind Substations: Insights and Challenges

keywords: design and qualification, floating offshore wind substation, HVAC, HVDC, high voltage equipment

Huang, Hui (1); Weimer, Leonard (1); Stavenes Hallan, Andreas (2); Etemaddar, Mahmoud (2); Sandeberg, Peter (1); Rahmqvist, Elin (1); Wahlers, Henning (1); Örtenmark, Patrik (1); Backström, Daniel (1)

1: Hitachi Energy; 2: Aibel AS

ID: 1328

ENHANCING RELIABILITY AND SECURITY OF STRUCTURES USING VIBRO STONE COLUMN NETWORK TO MITIGATE LIQUEFACTION

keywords: Bearing, Column, Foundation, Ground, Improvement, Khavda, Liquefaction, Stone KHANDELWAL, MONA; Prasad, Satyendra Kumar; Sharma, Sanjay; Kumar, Abhay; Burra, Vamsi Rama Mohan

POWER GRID CORPORATION OF INDIA LTD, India

ID: 1336

Advancing the Economic Viability of Floating Offshore Wind through Subsea Substations keywords: Cost, Floating offshore wind, Subsea, Substation, Transmission Normann, Truls (1); Martinsen, Øistein (2); Müller, Leif Arne (3)

1: Aker Solutions, Norway; 2: ABB, Norway; 3: Aker Solutions, Norway

ID: 1354

ONLINE NOISELESS ACOUSTIC DISCHARGE DETECTION IN INSULATION OF HV EQUIPMENT

keywords: Partial Discharges, Noiseless acoustic camera, Switchyard Soni, Umesh Nirnajanbhai; Patel, Shaileshkumar Babubhai

Electrical Research and Development Association, India

ID: 1380

Enhancing Reliability of Floating HVDC Substations through Monitoring and Inspections

keywords: Reliability, Floating substation, HVDC, Monitoring, Inspection Dupriez-Robin, Florian; Roux, François; Marine, Leduc; Jérémy, Bioud France Énergies Marines, France

ID: 1197

Conceptual Design of A Tension-leg Platform (TLP) Floating Offshore Substation Solution *keywords: Floater design, Floating offshore substation (FOSS), Global performance, Tension-leg platform (TLP), USA west coast*

Song, Hongbiao (1); TANG, Zhaoxiang (2); Bjork, Thomas (3)

1: GE Grid Solutions, United States of America; 2: Technip Energies, United States of America; 3: GE Grid Solutions, United Kindom

16:00 – 18:00 (Room-2) SC C3 session #2

Power infrastructure and biodiversity

Technology to reduce environmental impact

Study Committee C3 - Power system sustainability and environmental performance

ID: 1121

Mechanisms and mitigation of bird-related power outages of power grids: a case study involving herons at a substation

keywords: Bird damage, Control method, Environmental management, Human-wildlife conflict, Mobile robot

SHIRAI, Masaki (1); NAKANISHI, Yoshito (2); SUGIMOTO, Toshifumi (2); TSUDA, Sonoko (2); HAREYAMA, Takayuki (3); HITOTSUMATSU, Yosuke (4); ISHINO, Ryuichi (1); KOBAYASHI, Soh (1); NAKAYA, Ko (1)

1: Central Research Institute of Electric Power Industry, Japan; 2: Chubu Electric Power Co., Inc., Japan; 3: Tohoku Electric Power Network Co., Inc., Japan; 4: J-POWER Transmission Network Co., Ltd., Japan

ID: 1150

Eco-crossings, the effect of rock size and material on sprinkle layer on biodiversity in subsea power cable crossings

keywords: Subsea power cables; reef development; cable crossings; artificial reefs; benthic community; fish community

Hermans, Annemiek (1,3); Joost, Bergsma (2); Driessen, Floor (2); van Dongen, Udo (2); de Haan, Eva (2); Jaarsma, Saskia (1); Swinkels, Garnt (1); van Veldhuisen, Marcel (1)

https://cigrenrccsymposium2025.com/ May 12–15, 2025

1: T.S.O. TenneT, Netherlands, The; 2: Waardenburg Ecology; 3: Wageningen University

ID: 1323

Avian interaction with powerlines

keywords: Increase in predation, powerline designs, important conservation habitat

Hayward, Brett

Essential Energy., Australia

ID: 1376

Good environmental practices: conservation and recovery of maritime habitats

keywords: Renewable energy integration; conservation and recovery of maritime habitats; Ecofriendly concrete; Posidonia restoration.

San Millán, Rodrigo

Red Eléctrica, Spain

ID: 1473

Avian collision mitigation, global best practices and technology review

keywords: Bird flight diverter, avian collision, bird strike, overhead line collision, collision outage

McGowan, Brian

Scientias Ireland Limited, Ireland

ID: 1241

Green Substation- 100% Green Captive Power using GH2

keywords: Anode, cathode, chemical, electricity, electrodes, electrolyser, Fuel cell, Green Substation, GH2, Hydrogen, recharging, renewable

SINGH, Akhilesh Kumar; MITTAL, Himanshu; JAIN, Samrat POWER GRID CORPORATION OF INDIA LIMITED, India

ID: 1285

Ageing of Environmentally Friendly Insulation Gases by Partial Discharges

keywords: Decomposition, Dielectric Performance, Environmentally Friendly Insulation Gas, Partial Discharge, Switchgear

Subhana, Arik (1); Støa-Aanensen, Nina Sasaki (2); Meyer, Hans Kristian Hygen (2); Kragset, Jonas (1); Mauseth, Frank (1)

1: Norwegian University of Science and Technology, Norway; 2: SINTEF Energy Research, Norway

ID: 1352

420 kV Retrofill: from Gas-Insulated Lines to Gas-Insulated Switchgear another Step Towards the Decarbonisation of High-Voltage Switchgear Installed Base

keywords: Carbon Neutrality, Global Warming, Climate Change, SF6 free Solution, Reduction of CO2 equivalent

Jorge, Teresa (1); Christen, Dennis (2); von Arx, Freddy (3); Pachlatko, Samuel (4); Agostini, Francesco (5)

1: Hitachi Energy Ltd., Switzerland; 2: Hitachi Energy Ltd., Switzerland; 3: Hitachi Energy Ltd., Switzerland; 4: Hitachi Energy Ltd., Switzerland; 5: Hitachi Energy Ltd., Switzerland

ID: 1372

Natural & Synthetic Ester Fluid Filled Power Transformers and Reactors-A Pathway to achieve Carbon Neutrality in Electricity Transmission Sector

keywords: Decarbonization, Net Zero, Carbon neutrality, Carbon intensive, Natural Ester, Synthetic Ester, Power Transformer, Reactor, capacity enhancement

Chakraborty, Dibyendu Dey; Das, Richik Manas

POWERGRID, India

16:00 – 18:00 (Room-3) SC C2 session #4

Ancillary Services and Control in Power Electronics Dominated Power Systems Study Committee C2 - Power system operation and control

ID: 1120

Optimal and Coordinated Voltage Control: Case Study on a 132kV Norwegian Grid Subsystem

keywords: Centralized Optimizer, Dynamic Simulation, Optimal Power Flow, Power Losses, Reactive Power Management, Secondary Voltage Regulation, Voltage Stability

de Brito, Hugo Rodrigues; Baltensperger, Daniel Simon; Uhlen, Kjetil Obstfelder Norwegian University of Science and Technology (NTNU), Norway

ID: 1280

A New Vision for HVDC Control

keywords: HVDC, Control, Network, Coordination, Stations, Converter, Management, Interoperability, Multi-vendor

COCCO, Marco (1); GIANNUZZI, Giorgio (1); GNUDI, Roberto (1); MELONI, Roberto (1); MASONES, Giuseppe (1); CURTONI, Aldo (2); SALVETTI, Massimo (2) 1: Terna SpA, Italy; 2: CESI SpA, Italy

ID: 1124

Automatic Frequency Response Evaluation System

keywords: Frequency Response, Linear Regression, Synchrophasor, PMU OLACHEA, ALFREDO; SANDOVAL, LUIS MARTIN CENACE, Mexico

ID: 1419

Unlocking DSO services through Centralised and Distributed Control

keywords: Blackstart, Control, DER, DSO Services, Microgrids, Stability, Zonal Control Norris, Sean (1); Wilson, Douglas (1); Kanabar, Mital (2); MacDonald, David (3); Bagleybter, Oleg (1) 1: GE Vernova, United Kingdom; 2: GE Vernova, Canada; 3: GE Vernova, Spain

ID: 1461

Methodology for valuing the flexibility attribute performed by BESS in the Brazilian Electric System

keywords: Battery, Storage, BESS, Flexibility, Transmission Cunha, Ana Carolina; Dall'Orto, Celso; Aredes, Maynara; Pinho, Renan PSR, Brazil

https://cigrenrccsymposium2025.com/

May 12-15, 2025

ID: 1439

Nordic perspective on System Integrity Protection Schemes in relation to capacity allocation

keywords: Automation, Capacity Allocation, Flow-Based, Protection Schemes, SIPS

Malmer, Gabriel (1); Rolander, Arvid (2); Hillberg, Emil (3); Samuelsson, Olof (1); Ackeby, Susanne (3); Nordström, Lars (2)

1: Lund University; 2: KTH Royal Institute of Technology; 3: RISE Research Institutes of Sweden

ID: 1457

Prediction of Positive/Negative Error Sign of A Day-ahead Forecast of Aggregated PV Power Output *keywords: Battery energy storage systems, day-ahead forecast, flexibility, photovoltaic power generation*

Kato, Takeyoshi; Nakamura, Miyu

Nagoya University, Japan

ID: 1360

A new Data-Driven application for Secondary Voltage Regulation on Transmission Network based on Model Predictive Control for offset-free tracking

keywords: Data-Driven Modelling, Model Predictive Control, Reactive Power Management, Secondary Voltage Control

Acerbi, Federica (1); Piccagli, Davide Stefano (1); Pozzi, Fabio (1); Sciarpa, Luca (1); Giannuzzi, Giorgio Maria (2); Pisani, Cosimo (2); Bruno, Gianluca (2) 1: CESI S.p.A., Italy; 2: Terna S.p.A., Italy

16:00 – 18:00 (Room-4) Joint SC B4/C4 session

Grid Forming, analysis methodologies

Study Committee B4 – DC systems and power electronics & Study Committee C4 - Power system technical performance

ID: 1114

Small signal analysis of grid-forming control properties

keywords: Control design, Grid forming (GFM) converters, HVDC, Instantaneous reserve, Small signal analysis, Small signal modelling, Stability analysis

Schön, André; Strong, Błażej; Dadjo Tavakoli, Saman Siemens Energy Global GmbH & Co. KG, Germany

ID: 1281

Sensitivity Analysis in VSC-Based DC Microgrids

keywords: Direct Current, Distributed Generation, Linear Matrix Inequality, Proportional-Integral, Voltage Source Converter..

Londono, Vanesa (1); Garces, Alejandro (1); Gil, Walter (1); Useche Arteaga, Mario (2) 1: Universidad tecnologica de Pereira, Colombia; 2: UPC, Spain

ID: 1428

Assessment of Grid Forming capabilities of HVDC links with analytical envelopes - Application to HVDC link with grid forming on both sides

keywords: HVDC, Grid forming, Specification

RAULT, Pierre (1); Costan, Valentin (1); Lemaire, Robin (2); Lennerhag, Oscar (3); Rogersten, Robert (3); VOR DEM BERGE, Markus (2)

1: RTE, France; 2: RTE International, France; 3: SVK, Sweden

ID: 1453

Comparison of Two Grid-Forming Controls with Inversed Droop Controls in MTDC systems

keywords: MTDC, Grid-Forming, Droop, Stability

Pang, Ying; Egea, Agusti; Perez, Filipe; Gonzalez, Juan-Carlos; Shinoda, Kosei; Benchaib, Abdelkrim SuperGrid Institute, France

ID: 1462

Application of the Baihetan-Jiangsu Topology in the Brazilian Electric System to Mitigate HVDC AC/DC Interaction Issues

keywords: UHVDC, Multiterminal, MMC, Multi-infeed

Cunha, Ana Carolina (1); Leal, Gustavo (2); França, Bruno Wanderley (3); Rolim, Luís Guilherme (2); Esmeraldo, Paulo Cesar (4)

1: PSR, Brazil; 2: COPPE/UFRJ, Brazil; 3: UFF, Brazil; 4: POWERCONSULT, Brazil

ID: 1432

Voltage Control Stability of Grid Forming Wind Turbines During Faults

keywords: Off-shore wind power plants, HVDC link, Grid Forming Control, Fault-ride-through. Martinez-Turegano, Jaime; Navarro-Martinez, Gala; Blasco-Gimenez, Ramon Universitat Politecnica de Valencia, Spain

ID: 1443

Performance Verification of the First Grid Forming STATCOM in the US for South Fork Offshore Wind Farm

keywords: SFW01, PSEG-LI, Point of Interconnection, Performance Requirements, Grid Forming, STATCOM, Weak Grid Connection, Voltage Control, Fault Ride-Through, Stability, Controller Gain, Control Tuning, Power Ouality

Heissel, Claus G (1); Owens, Andrew J (2); Lindstrøm, Emil (2); Sahukari, Sridhar (1); Idehen, Osazee Edo (1); Sedaghat, Behzad (1)

1: Ørsted; 2: Hitachi Energy

ID: 1341

Compliance process for grid forming control: Best practice and way forward

keywords: Grid forming control, HVDC, STATCOM, BESS, power system stability

Höhn, Sebastian; Deiml, Georg; Rauscher, Florian TenneT TSO GmbH, Germany

ID: 1384

The role of the Grid Forming technology in the decarbonisation of the italian electricity grid

https://cigrenrccsymposium2025.com/

keywords: Dynamic stability, Grid forming, IBR, Inertia, Inverter Control, System strength

Baffa Scirocco, Temistocle (1); Belmonte, Luca (1); Carlini, Enrico Maria (1); Malgarotti, Stefano (2); Mussi, Corrado (2); Pisaneschi, Francesco (1); Pretolani, Francesco (2); Urbanelli, Andrea (1); Zanghì, Antonio (1)

1: Terna s.p.a, Italy; 2: Cesi s.p.a., Italy

16:00 – 18:00 (Room-5) SC D2 session #4

Telecommunications 2 (AG D2.03 Telecommunications)

Study Committee D2-Information systems telecommunications and cybersecurity

ID: 1209

Construction and operation of a multivendor IP network for integrated legacy analog signals

keywords: Internet protocol (IP), network, multi-protocol label switching-transport profile (MPLS-TP), multi-protocol label switching-traffic engineering (MPLS-TE), software-defined networking (SDN)

Nitta, Jumpei; Takahashi, Yuma

Tohoku Electric Power Network Co., Inc., Japan

ID: 1223

Concept of "Local data & Innovation centres" in Power Sector

keywords: Big data application, data center, renewable energy integration, smart power solution. time of use, artificial intelligence

Quadeer, Nida Powergrid Corporation of India Limited, India

ID: 1250

High resilience of power communication using Non-Terrestrial Networks (NTNs), including Low Earth Orbit (LEO) satellites and High Altitude Platform Stations (HAPS)

keywords: NTN, Non-Terrestrial Network, HAPS, Satellite, Low Earth Orbit

Hiramatsu, Yuta

Kyushu Electric Power Transmission and Distribution Co., Inc., Japan

ID: 1259

Sustainable Grid Growth through Migration to an MPLS-TP Packet-based Network

keywords: MPLS-TP, 1.5M, J1, Line differential protection, Renewables, Windfarm, Solar plant, Telephone, Telecontrol, IEC61850

Yokoyama, Tomohiro (1); Terachi, Wataru (1); Haegdorens, Davy (2) 1: HokkaidoElectricPowerNetwork, Inc./Japan; 2: Belden/Belgium

ID: 1346

DC System Upgrades for Optical Transport Network Deployment

keywords: Battery, Charger, DC, Dense Wavelength Division Multiplexing, DWDM, IP/MPLS, Lithium-Ion, Optical Transport Network, OTN, Recharge, Recharge Time, Telecommunications

Bebwele, Phumudzo; Setlhapelo, Kgomotso; Mahlangu, Thabang; Hina, Mfundiso

NTCSA, South Africa

https://cigrenrccsymposium2025.com/

May 12-15, 2025

ID: 1379

Telecoms Modelling Tools in Carbon Neutral Power Generation

keywords: Modelling, Smart Grid, South Africa, Telecommunications, Tools, Utility Ngwenya, Sicelokuhle Oscar; Setlhapelo, Kgomotso; Shezi, Bongani NTCSA, South Africa

ID: 1458

Monitoring the performance of 2.4GHZ ISM band wireless communication technologies for power grid IoT applications

keywords: Bluetooth, Industrial IoT, Industry 4.0, Renewables, Wi-Fi, Wireless Communication Gore, Rahul

Hitachi Energy Research, Sweden

ID: 1464

Synopsis titleUnified Network Management System (UNMS)-an amalgamation of multivendor communication systems into a single centralized monitoring system.

keywords: Multivendor, Unified Network Management System (UNMS), Communication System, Network Discovery, Topology, Circuit Discovery

Sarkar, Sangita; Mishra, Nutan; Agarwal, Atul Kumar; Singh, Jasbir POWERGRID Corporation of India Limited, India

Wednesday 14th of May: Technical Tour

SINTEF and NTNU invites to a tour in their labs:

- Hydropower lab
- Experiments on new gases and liquids
- Testing of cables
- Power electronic stresses on electric insulation
- Smartgrid labs

Time: 06.00 - 08.00 PM (*)

Busses from to venue will be arranged.

Advance booking is required.

(*) This tour is nearly fully booked. A second tour from 04.00 – 06.00 PM will be scheduled if there is sufficient demand.

Description of CIGRE Study Committees participating in the Trondheim 2025 symposium

Study Committee A3 Transmission and distribution equipment

SC A3 addresses topics throughout the asset management life-cycle phases; from conception, through research, development, design, production, deployment, operation, and end-of life. At all stages, technical, safety, economic, environmental and social aspects are addressed as well as interactions with, and integration into, the evolving power system and the environment. All aspects of performance, specification, testing and the application of testing techniques are within scope, with a specific focus on the impact of changing interactions and demands due to evolution of the power system. Life cycle assessment techniques, risk management techniques, education and training are also important aspects.

Study Committee B1 – Insulated cables Within its technical field of activity, Study Committee B1 addresses topics throughout the asset management life-cycle phases; from conception, through research, development, design, production, deployment, operation, and end-of life related to:

- AC and DC insulated power cable systems for power transmission, distribution and generation connections on land and in submarine applications.
- Power cable systems associated with microgrids and the integration of distributed resources.

<text>

<text>

https://cigrenrccsymposium2025.com/ May 12–15, 2025

Study Committee B2 – Overhead lines

Study Committee B2 covers all aspects of overhead line design (AC and DC), including construction, maintenance, modification of existing lines and environmental considerations. Specific areas of interest are:

- Electrical Performance.
- Towers, Insulators and Foundations.
- Conductors and Fittings.
- Asset management .

Study Committee B3 – Substations and electrical installations

Study Committee B3 deals with issues in all phases of the substation lifetime; from conception, through research, development, design, production, deployment, operation and end-of-life. At all stages, technical, safety, economic, environmental and social aspects are addressed, as well as interactions with and integration into the evolving power system and environment. All aspects of performance, specification, testing and the application of testing techniques are within the scope, with particular emphasis on the impact of changing interactions and requirements due to the evolution of the power system. Life cycle assessment techniques, risk management techniques, education and training are also important aspects.

B3 Substations and

electrical installations

Study Committee B4 – DC systems and power electronics

SC B4 covers the full spectrum of DC systems and PE devices including technology, specification, design, implementation, operation, maintenance, refurbishment of DC systems and FACTS devices.

Within its technical field of activity, Study Committee B4 addresses DC systems and Power Electronics (PE) equipment in both transmission and distribution systems. The committee also addresses study DC Converters for the integration of distributed renewable (PVs) and energy storage as well as power quality control.

Study Committee B5 – Protection and automation

Within its technical field of activity, Study Committee B5 addresses topics throughout protection, control, monitoring, the metering, and fault locating devices and systems management life-cycle phases; from conception, through research. development, design, engineering, configuration, production, deployment, operation, and end-of life. Within this framework specific areas of attention include: (i) Theory, principles and concepts, functionality, technological development, design, performance and application of materials, efficiency, (ii) Application guidance, planning, installation, service conditions, (iii) Reliability, availability, dependability, maintainability and maintenance, service, condition monitoring, diagnostics, restoration, repair, loading, upgrading, uprating, (iv) Refurbishment, reuse/re-deployment, deterioration. dismantling, disposal.

Protection and automation

https://cigrenrccsymposium2025.com/

Click here to register now!!

Study Committee C2 – Power system operation and control

The scope of the SC C2 covers the technical, human resource and institutional aspects and conditions for a secure and economic system operation of power systems in a way that is in compliance with requirements for system network security, against disintegration, equipment damages and human injuries, and security of electricity supply. Key areas of interest include (i) Developments and changes in the business of System Operators to meet the evolving environment, (ii) WAMS, WAMPS and WAMPACS and their integration within the control centre environment (iii) Development and use of power system analysis and security assessment functionalities within operational planning and real-time supervision, supporting system operators.

Study Committee C3 – Power system sustainability and environmental performance.

The scope of Study Group C3 covers the interactions between the natural and social environments and the end-to-end electricity system.

It involves addressing environmental and social impacts such as land use, biodiversity; greenhouse gases; air, soil, and water pollution; natural resource consumption; waste generation; electromagnetic fields; noise or landscape. It also considers the prominent role and relevance of different stakeholder groups, with a special focus on local communities.

The role of the power system in relation to the UN Sustainable Development Goals (SDGs) is also a field of work for SC3.

C3

Power system sustainability and environmental performance

Study Committee C4 – Power system technical performance

Study Committee C4 is responsible for advanced methods and tools for analysis related to end-to-end power systems, with particular reference to dynamic and transient conditions and to the interaction the power system and its between apparatus/sub-systems (including external causes of stress, other installations and nonstandardised waveforms). The scope of SC C4 covers power system technical performance phenomena that range from nanoseconds to many hours. Areas of attention include:

- Power System Dynamics:
- Power Quality
- Electromagnetic Compatibility and Interference (EMC/EMI)
- Lightning
- Insulation Co-ordination

Study Committee C6 – Active distribution systems and distributed energy resources The mission of Study Committee C6 is the aassessment of the technical impacts resulting from a widespread adoption of DER applications on planning and operation and on approaches, and of enabling technologies and innovative solutions for DER integration in active distribution systems.

Key areas of interest include integration of DER, storage technologies, electric vehicles, multi-energy systems, smart cities, rural electrification, microgrids, virtual power plants, customer integration and empowerment, demand response, advanced metering systems and MV/LV DC systems. C4 Power system technical performance

Active distribution systems and distributed energy resources

Study Committee D2 – Information systems telecommunications and cybersecurity

Study Committee D2 provides guidance, shares knowledge, and develops best practices and publications in areas of information systems, telecommunications, and cybersecurity throughout the entire electricity supply chain. Main areas of interest include ICT equipment, architectures, security and governance including consideration of fundamental principles, design, specification, testing engineering, commissioning, performance, operation and maintenance aspects. ICT applied to digital networks, communication interoperability solutions, and data exchange, IT systems in Asset Management.

D2 Information systems and cybersecurity